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1 Scope 
This Technical Guidance Document (TGD 2a) is a specific topic document on Predictive Statistics, part of 

a series of information and guidance documents regarding Accuracy and Predicted Accuracy in the 

National System for Geospatial Intelligence (NSG).  As the title suggests, it focuses on methods, practices 

and applications of predictive statistics within the context of a larger scope of work which includes a 

more generalized overview and additional topic specific technical guidance.  Documents in this series 

are listed below: 

TGD 1  Accuracy and Predicted Accuracy in the NSG:  Overview and Methodologies 

TGD 1-G Accuracy and Predicted Accuracy in the NSG:  Glossary of Terms 

TGD 2a   Accuracy and Predicted Accuracy in the NSG: Predictive Statistics    

TGD 2b   Accuracy and Predicted Accuracy in the NSG: Sample Statistics    

TGD 2c   Accuracy and Predicted Accuracy in the NSG: Specification and Validation   

TGD 2d   Accuracy and Predicted Accuracy in the NSG: Estimators and Quality Control  

TGD 2e   Accuracy and Predicted Accuracy in the NSG: Monte-Carlo Simulation   

TGD 2f   Accuracy and Predicted Accuracy in the NSG: External Data and Quality Assessment 

All documents in the series, “Accuracy and Predicted Accuracy in the NSG”, are intended to provide 

technical guidance to inform the development of geospatial data accuracy characterization for NSG 

GEOINT collectors, producers and consumers -- accuracy characterization as required to describe the 

trustworthiness of geolocations for defense and intelligence use and to support practices that acquire, 

generate, process, exploit, and provide geolocation data and information based on geolocation data.  

Today, both the sources and desired uses for geospatial data are quickly expanding.  Throughout the 

NSG, trusted conveyance of geospatial accuracy is broadly required for a variety of traditional and 

evolving missions including those supported by manual, man-in-the-loop, and automated processes.  

This guidance is the foundation layer for a collection of common techniques, methods, and algorithms 

ensuring that geospatial data within the NSG can be clearly requested, delivered and evaluated as fit for 

desired purpose whether by decision makers, intelligence analysts, or as input to further processing 

techniques.   

TGD 2a contains references to and is referenced by other Technical Guidance Documents.  The 

documents in this series, TGD 1 and TGD 2b – TGD 2f, also have cross-references among themselves.  

All Technical Guidance Documents also reference external public as well as “NGA approved for public 

release” documents for further insight/details.  While each individual document contains definitions for 

important relevant terms, TGD 1-G compiles all important terms and respective definitions of use 

particular to this series of documents to ensure continuity and provide ease of reference. 
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The TGD 2 documents, including this document focused on predictive statistics, are also considered 

somewhat top-level in that they are not directed at specific systems.  They do provide general guidance, 

technical insight, and recommended algorithms.  The relationship of the Technical Guidance Documents 

with specific GEOINT Standards documents and specific Program Requirements documents is presented 

in Figure 1-1, where arrows refer to references.  That is, in general, specific product requirement 

documents reference specific GEOINT standards documents which reference specific technical guidance 

documents. 

 

Figure 1-1: The relationships between the Technical Guidance Documents, GEOINT Standards 

Documents, and Program Requirement Documents 

Accuracy and Predicted Accuracy in the NSG: Predictive Statistics, Technical Guidance Document (TGD) 

2a is for guidance only and cannot be cited as a requirement. 
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for acquisition
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…
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2 Applicable Documents 
The documents listed below are not necessarily all of the documents referenced herein, but are those 

needed to understand the information provided by this information and guidance document. 

2.1 Government specifications, standards, and handbooks 
 

NGA.SIG.0026.01_1.0_ACCOVER, Accuracy and Predicted Accuracy in the NSG:  Overview and 

Methodologies, Technical Guidance Document (TGD) 1 

NGA.SIG.0026.02_1.0_ACCGLOS, Accuracy and Predicted Accuracy in the NSG:  Glossary of Terms, 

Technical Guidance Document (TGD) 1-G 

NGA.SIG.0026.04_1.0_ACCSAMP, Accuracy and Predicted Accuracy in the NSG:  Sample Statistics, 

Technical Guidance Document (TGD) 2b    

NGA.SIG.0026.05_1.0_ACCSPEC, Accuracy and Predicted Accuracy in the NSG:  Specification and 

Validation, Technical Guidance Document (TGD) 2c 

NGA.SIG.0026.06_1.0_ACCESQC, Accuracy and Predicted Accuracy in the NSG:  Estimators and Quality 

Control, Technical Guidance Document (TGD) 2d 

NGA.SIG.0026.07_1.0_ACCMTCO, Accuracy and Predicted Accuracy in the NSG: Monte-Carlo Simulation, 

Technical Guidance Document (TGD) 2e 

NGA.SIG.0026.08_1.0_ACCXDQA, Accuracy and Predicted Accuracy in the NSG: External Data and 

Quality Assessment, Technical Guidance Document (TGD) 2f  
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3 Definitions 
There are a number of authoritative guides as well as existing standards within the NSG and Department 
of Defense for definitions of the identified key terms used in this technical guidance document.  In many 
cases, the existing definitions provided by these sources are either too general or, in some cases, too 
narrow or dated by intended purposes contemporary to the document's development and publication.  
The definitions provided in this document have been expanded and refined to explicitly address details 
relevant to the current and desired future use of accuracy in the NSG.  To acknowledge the basis and/or 
linage of certain terms Section 3.1, we reference the following sources considered as either foundational 
or contributory: 
 
[a] Anderson, James M. and Mikhail, E., Surveying: Theory and Practice, 7th Edition, WCB/McGraw-Hill, 

1998. 

[b] DMA-TR-8400.1, DMA Technical Report: Error Theory as Applied to Mapping, Charting, and Geodesy. 

[c] Defense Mapping Agency, Glossary of Mapping, Charting, and Geodetic Terms, 4th Edition, Defense 

Mapping Agency Hydrographic/Topographic Center, 1981. 

[d]  ISO TC/211 211n2047, Text for ISO 19111 Geographic Information - Spatial referencing by 

coordinates, as sent to the ISO Central Secretariat for issuing as FDIS, July 17, 2006. 

[e] Joint Publication (JP) 1-02, Department of Defense Dictionary of Military and Associated Terms, 

November 8, 2010 as amended through January 15, 2016. 

[f] MIL-HDBK-850, Military Handbook: Glossary of Mapping, Charting, and Geodetic Terms, January 21, 

1994. 

[g] MIL-STD-2401, Department of Defense Standard Practice; Department of Defense World Geodetic 

System (WGS), January 11, 1994  

[h] MIL-STD-600001, Department of Defense Standard Practice; Mapping, Charting and Geodesy 

Accuracy, February 26, 1990. 

[i] National System for Geospatial Intelligence [Brochure] Public Release Case #15-489. 

[j] NGA.STND.0046_1.0, The Generic Point-cloud Model (GPM): Implementation and Exploitation, 

Version 1.0, October 03, 2015. 

[k] Oxford Dictionaries (www.oxforddictionaries.com/us/) copyright © 2016 by Oxford University Press. 

[l] Soler, Tomas and Hothem, L., “Coordinate Systems Used in Geodesy: Basic Definitions and Concepts”, 
Journal of Surveying Engineering, Vol. 114, No. 2, May 1988. 

  

http://www.oxforddictionaries.com/us/
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3.1 Key Terms Used in the Document  

3.1.1 Accuracy 

The range of values for the error in an object’s metric value with respect to an accepted reference value 

expressed as a probability.  [f]  

 Statements of accuracy may be developed through applications of predictive statistics or by 

sample statistics based on multiple independent samples of errors. 

3.1.2 Circular Error 

See Scalar Accuracy Metrics. 

3.1.3 Error 

The difference between the observed or estimated value and its ideal or true value.   See Appendix A for 

a more detailed and augmented definition. [f]   

3.1.4 Fusion 

A process that combines or relates different sources of (typically independent) information. 

3.1.5 Linear Error 

See Scalar Accuracy Metrics. 

3.1.6 Monte-Carlo Simulation 

A technique in which a large number of independent sample inputs for a system are randomly 

generated using an assumed a priori statistical model to analyze corresponding system output samples 

statistically and support derivation of a statistical model of the system output.  This technique is 

valuable for complex systems, non-linear systems, and those where no insight to internal algorithms is 

provided (“black box” systems). 

3.1.7 National System for Geospatial Intelligence (NSG) 

The operating framework supported by producers, consumers or influencers of geospatial intelligence 

(GEOINT).  Spanning defense, intelligence, civil, commercial, academic and international sectors, the 

NSG contributes to the overall advancement of the GEOINT function within the strategic priorities 

identified by the Functional Manager for Geospatial Intelligence in the role established by Executive 

Order 12333.  The framework facilitates community strategy, policy, governance, standards and 

requirements to ensure responsive, integrated national security capabilities. [i] 
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3.1.8 Predicted Accuracy 

The range of values for the error in a specific object’s metric value expressed as a probability derived 

from an underlying and accompanying detailed statistical error model.   

 If the statistical error model does not include the identification of a specific probability 

distribution, a Gaussian (or Normal) probability distribution is typically assumed in order to 

generate probabilities.  

 The term “Predicted” in Predicted Accuracy corresponds to the use of predictive statistics in the 

detailed statistical error model; it does not correspond to a prediction of accuracy applicable to 

the future since the corresponding error corresponds to a geolocation already extracted. 

3.1.9 Predictive Statistics 

Statistics corresponding to the mathematical modeling of assumed a priori error characteristics 

contained in a statistical error model. 

3.1.10 Quality Assurance 

The maintenance of a desired level of quality in a service or product, especially by means of attention to 

every stage of the process of delivery or production. [k] 

3.1.11 Quality Assessment 

Processes and procedures intended to verify the reliability of provided data and processes, typically 

performed independent of collection or production.   For example, If ground truth is available, then 

comparison of actual (sample) errors to predicted errors (statistical values via rigorous error 

propagation) is a key part of this process. 

3.1.12 Sample Statistics 

Statistics corresponding to the analysis of a collection of physical observations, a sample of the 

population, as compared to an assumed true or an a priori value. 

3.1.13 Scalar Accuracy Metrics 

Convenient one-number summaries of geolocation accuracy and geolocation predicted accuracy 

expressed as a probability: (1) Linear Error (LE) corresponds to 90% probable vertical error, (2) Circular 

Error (CE) correspond to 90% probable horizontal radial error, and (3) Spherical Error (SE) corresponds 

to 90% spherical radial error.  See Appendix A for a more detailed and augmented definition.  [b],[f], 

and [h] 

3.1.14 Spherical Error (SE) 

See Scalar Accuracy Metrics. 

3.1.15 Statistical Error Model 

Information which describes the error data corresponding to a given state vector.  The information 

includes the type of corresponding error representation (random variable, random vector, stochastic 

process, or random process), the category of statistics (predictive or sample), and associated statistical 

information including at a minimum the mean-value and covariance data. 

http://www.oxforddictionaries.com/us/definition/american_english/maintenance#maintenance__2
http://www.oxforddictionaries.com/us/definition/american_english/desire#desire__7
http://www.oxforddictionaries.com/us/definition/american_english/delivery#delivery__2
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3.1.16 Validation 

The process of determining the degree to which a model is an accurate representation of the real world 

from the perspective of its intended use/s. In the NSG, this includes validation of accuracy and predicted 

accuracy specified capabilities. [e]   

3.1.17 Variance 

The measure of the dispersion of a random variable about its mean-value, also the standard deviation 

squared. [b] 

3.1.18 Verification 

The process of determining that an implemented model accurately represents the developer’s 

conceptual description and specifications.  [e] 
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3.2 Other Relevant Terms 
Appendix A contains definitions of the following additional terms relevant to the content of this 

document: 

 A priori  

 A posteriori  

 Absolute Horizontal Accuracy 

 Absolute Vertical Accuracy 

 Bias Error 

 CE-LE Error Cylinder 

 Confidence Ellipsoid 

 Correlated Error 

 Correlated Values  

 Covariance  

 Covariance Function 

 Covariance Matrix  

 Cross-covariance Matrix 

 Deterministic Error 

 Distance Constant 

 Earth Centered Earth Fixed Cartesian 

Coordinate System 

 Error (augmented definition)  

 Error Ellipsoid 

 Estimator 

 Gaussian (or Normal) probability 

distribution 

 Geodetic Coordinate System 

 Ground Truth 

 Homogeneous 

 Horizontal Error 

 Inter-state Vector Correlation 

 Intra-state Vector Correlation 

 Local Tangent Plane Coordinate System  

 Mean-Value  

 Metadata 

 Multi-image Geopositioning (MIG) 

 Multi-state Vector Error Covariance 

Matrix 

 Order Statistics 

 Percentile 

 Precision 

 Principal Matrix Square Root  

 Probability density function  

 Probability distribution 

 Probability distribution function 

 Radial Error 

 Random Error 

 Random Error Vector 

 Random Field  

 Random Variable  

 Random Vector  

 Realization 

 Relative Horizontal Accuracy 

 Relative Vertical Accuracy 

 Scalar Accuracy Metrics (augmented 

definition) 

 Sensor support data   

 Spatial Correlation 

 Standard Deviation 

 State Vector 

 State Vector Error 

 Stationary  

 Stochastic Process 

 Strictly Positive Definite Correlation 

Function (spdcf)  

 Systematic Error 

 Temporal Correlation 

 Time Constant  

 Uncertainty 

 Uncorrelated Error 

 Uncorrelated Values  

 Vertical Error 

 WGS84   
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3.3 Abbreviations and Acronyms 
 

Abbreviation/Acronym Definition 
1d One Dimensional 

2d Two Dimensional 

3d Three Dimensional 

cdf cumulative probability distribution function 
CE Circular Error 
CSM Community Sensor Model 
ECF Earth Centered Fixed 
ENU East North Up 
GEOINT Geospatial Intelligence 

GPS Global Positioning System 
LE Linear Error 
NSG National System for Geospatial Intelligence 
pdf probability density function 
SE Spherical Error 
spdcf strictly positive definite correlation function 
TGD Technical Guidance Document 

UAV Unmanned Aerial Vehicle 
WGS84 World Geodetic System 1984 
WLS Weighted Least Squares 
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4 Introduction to Predictive Statistics in the NSG 
This document describes predictive statistics and provides detailed technical guidance regarding their 

recommended use in the NSG.  We first start with some background definitions required for context: 

Accuracy in the NSG is defined as: “the range of values for the error in an object’s metric value 

expressed as a probability”.  Furthermore, this general definition can be sub-allocated to more specific 

accuracies.  For example, we can define horizontal accuracy for a specific system as:  “the 90th percentile 

of horizontal (radial) geolocation error, where location is relative to a specified geodetic reference 

system”. 

Predicted accuracy in the NSG is defined as: “the range of values for the error in a specific object’s 

metric value expressed as a probability derived from an underlying and accompanying detailed 

statistical error model.”  The detailed statistical error model includes predictive statistics when in an 

operational environment.  (Sample statistics are used for accuracy/performance validation and 

verification, as well as inputs to the a priori modelling of predictive statistics.)  Underlying errors are 

represented as random vectors (variables), stochastic processes, and random fields. 

A top-level discussion of accuracy, predicted accuracy, predictive statistics, sample statistics, and their 

various differences and interrelationships are provided in TGD 1: “Accuracy and Predicted Accuracy in 

the NSG: Overview and Methodologies”.  Predicted accuracy is identified as critical to the optimal and 

reliable performance of an NSG system.  Predictive statistics are identified as the key component of 

predicted accuracy.   

Now that background definitions have been presented, we go on to present an overview of predictive 

statistics per section of this document: 

Section 5.1 begins by defining relevant predictive statistics: mean-value, covariance matrix, probability 

density function (pdf), and strictly positive definite correlation function (spdcf). The first three of these 

statistics correspond to a single, multi-component (𝑛𝑥1) state vector, and its corresponding multi-

component state vector error, an 𝑛𝑥1“random vector”.   

As discussed in Section 5.1, the most important and practical predictive statistic is the 𝑛𝑥𝑛 error 

covariance matrix, and as such, Section 5.2 presents important properties and rigorous descriptors.  

Section 5.3 then goes on to describe how to compute and interpret the error ellipsoid, which is a 

rigorous, equivalent, and important visual counterpart to the error covariance matrix.  Section 5.4 

details practical approximations of the error covariance matrix and accuracy: the ubiquitous scalar 

accuracy metrics LE, CE, and SE.   

In the remaining sections we “switch gears” to use of the more general multi-state vector and its 

corresponding multi-state vector random error and error covariance matrix.  Section 5.5 first defines the 

multi-state vector as simply consisting of a collection of individual state vectors, all “stacked” together.  

It then defines its corresponding multi-state vector error covariance matrix as consisting of the 

previously defined error covariance matrices for each of the individual state vectors, plus the various 

cross-covariance matrices corresponding to each pair of individual state vectors.   
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Most, but not all, of the sections following Section 5.5 make use of the multi-state vector error 

covariance matrix.  It is a practical predictive statistic for a collection of related individual state vectors 

and their random error vectors.  Such a collection may consist of temporally correlated state vector 

errors corresponding to a time series of realizations from a stochastic process, such as a time series of 

satellite position and/or attitude (pointing) metadata and their errors.  Alternatively, such a collection 

may consist of individual state vectors adjusted simultaneously in a batch weighted least squares (WLS) 

estimator and their subsequent solution errors. 

Section 5.6 discusses propagation of the multi-state vector error covariance matrix, an important 

process in “rigorous error propagation”.  Section 5.7 discusses generic methods for the generation of 

multi-state vector error covariance matrices, including the use of spdcf.  Section 5.8 discusses generic 

methods for the practical representation and dissemination of the multi-state vector error covariance 

matrix.  Section 5.9 details the approximation of the multi-state vector error covariance matrix via spdcf 

for bandwidth reduction, as many of these error covariance matrices can be very large.  Of course, in all 

of these sections, as well as proceeding sections, such multi-state vector error covariance matrices must 

be theoretically valid (positive definite, invertible, etc.), and corresponding generation, representation, 

and dissemination techniques presented guarantee as such.   

4.1 Guide to Detailed Technical Content 
The following is a corresponding top-level roadmap of Section 5 of this document, Methodologies and 

Algorithms in Predictive Statistics:  

 Section 5.1: Fundamentals of Predictive statistics  

 Role in the NSG 

 Differences from sample statistics 

 Overview: mean, error covariance matrix, probability density function (pdf), strictly 

positive definite correlation function (spdcf) 

 Definitions of mean, error covariance matrix from the pdf 

 The Gaussian or Normal multi-variate pdf 

 Section 5.2:  Properties and rigorous descriptors of the error covariance matrix  

 Positive definite; hence, positive eigenvalues and invertible 

 Captures correlation between error components – essential to many applications 

 “Valid” versus “pseudo-valid” versus “invalid”  error covariance matrices; “realistic” 

error covariance matrices 

 Section 5.3:  Error ellipsoids: equivalent and  visual descriptions of the error covariance matrix  

 How to interpret, compute, and render 

 (Covariance matrix B)  >=  (Covariance matrix A) and implications 

 Definition and applications of the “union error ellipsoid” and “intersection error 

ellipsoid” 

 Section 5.4:  Scalar accuracy metrics: Linear Error, Circular Error, and Spherical Error  

 Definitions and how to interpret 

 Ubiquitous and in need of computational standardization  
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 Rigorous derivations and practical algorithms to compute 

 Section 5.5:  Multi-state vector error covariance matrix definition   

 Error covariance matrix and error cross-covariance matrix 

 Intra-state vector correlation and inter-state vector correlation 

 Definition and computation of the relative error covariance matrix  

 Section 5.6:  Propagation of the multi-state vector error covariance matrix  

 Methods and properties 

 Section 5.7:  Generic methods for generation of the multi-state vector error covariance matrix  

 A priori modeling and use of sample statistics 

 Batch and real-time estimator output 

 Section 5.8:  Generic methods for representation/dissemination of the multi-state vector error 

covariance matrix  

 Direct, “A matrix”, spdcf 

 Section 5.9:  Approximation of the multi-state vector error covariance matrix  

 Summary methods using CE and LE over geographic regions are problematic 

 Spdcf method ensures a valid error covariance matrix and bandwidth compression 

 Section 5.10:  An overview of useful references and their content relative to various sections of 

the document.  Some are also referenced directly in the text, particularly when content was 

deemed essential but space limited. 

Some sections contain examples that are based on various aspects of image-based geopositioning; 

however, the same principles apply across the entire scope of the NSG. 
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5 Methodologies and Algorithms in Predictive Statistics  

5.1 Fundamentals of Predictive Statistics 
Predictive statistics are used throughout the NSG.  They form important inputs and outputs between 

various collection, value-added processing, and exploitation modules. There are four general predictive 

statistics for associated errors: 

 Mean-value 

 Covariance matrix 

 Probability density function 

 Strictly positive definite correlation function. 

The above predictive statistics actually correspond to 𝑛𝑥1 random error vectors associated with 𝑛𝑥1 

state vectors within various modules of the NSG, i.e., errors in the state vectors’ values relative to 

“truth”.   

The term “random error vector” is more precisely defined as a random vector representation of error.  

As such, a random error vector contains 𝑛 random errors as components, each represented as a random 

variable.  The “origin” of a random error vector can either be “stand-alone”, or associated with a 

particular time in a stochastic process, or associated with a particular location in a random field, as 

discussed in TGD 1.  A component in a random error vector may be correlated with other components in 

the same random error vector (intra-state vector correlation).  In addition, a random error vector may 

be correlated with other random error vectors (inter-state vector correlation), i.e., their components are 

correlated. 

A random error vector’s 𝑛𝑥1 mean-value and its 𝑛𝑥𝑛 covariance matrix about that mean-value are 

standard and reasonably well-defined predictive statistics.  The mean-value of a predictive error is 

typically zero unless specifically stated otherwise, i.e., all of its 𝑛 components are equal to zero. 

A random error vector’s probability density function is an optional “statistic”.  It defines the probability 

distribution of underlying error components or random variables.  If it corresponds to a Gaussian or 

Normal multi-variate distribution (the two terms are used interchangeably), its identity as such, along 

with the aforementioned mean and covariance, completely specify the distribution.  The term “multi-

variate” is used when the number of components in the random error vector is greater than 1, i.e., 𝑛 >

1.  If a (multi-variate) probability density function is not identified (defined), it is usually assumed 

Gaussian.  Note that for many processes, identification of a specific (multi-variate) probability 

distribution is not required.  For example, only the mean-value and error covariance matrix are required 

in order to implement a Best Linear Unbiased Estimator.  No specific probability density need be 

assumed. 

Strictly positive definite correlation functions (spdcf) are used to model temporal correlation or spatial 

correlation between various random error vectors which typically correspond to a stochastic process at 

specific times or a random field at specific spatial locations, respectively.  The appropriate evaluation of 

an spdcf allows for generation of the cross-covariance matrix between the random error vectors.  The 
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cross-covariance matrices are placed into the more general multi-state vector error covariance matrices 

discussed in Section 5.5.  Like the probability density functions, spdcf are optional “statistics”, and 

typically characterized by a few parameters, such as temporal (de)correlation time constants. 

Predictive statistics are “modelled” statistics, in that they correspond to an a priori (mathematical) 

model or are the output of a computational process, like an estimator.  They are in contrast to sample 

statistics, which are typically generated “off-line” from a set of sampled errors using corresponding 

“ground truth”.  Of course, there is interplay between the two types of statistics: predictive statistics 

affect system errors which are then (occasionally) sampled.  And sample errors can be used to better 

refine the predictive statistics and underlying predictive error models. 

Finally, various predictive statistics throughout the NSG are inter-related in that they are both module 

inputs and outputs.  They affect each other, as outlined in Figure 5.1-1.  This is one reason why it is so 

important to properly generate and disseminate them within a given module. 

 

Figure 5.1-1: The interrelationship between predictive statistics, as represented by the error covariance 

matrix 𝐶𝑋, across different (color-coded) modules in the NSG 

In the above figure, the primary predictive statistic, the error covariance matrix 𝐶𝑋, is illustrated.  Bold-

face text indicates an error covariance matrix generated by the identified module, typically an a 

posteriori solution error covariance matrix generated by an estimator in the module.  This error 

covariance matrix is an output of the identified module and may be an input to one or more “down-

stream” modules.  Non-bold-face text indicates a priori information input to a module, such as an error 

covariance matrix (or parameters to generate this matrix) corresponding to measurement errors, used 

by an estimator in the module in order to weight the measurements used in the solution. 

We now go on to define the predictive statistics for a random error vector.  The definition for the spdcf 

refers to multiple random error vectors and is postponed until Section 5.8. 
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5.1.1 Random Error Vector statistic definitions 

In the following definitions, the superscript T indicates vector (or matrix) transpose, the “overbar” 

indicates mean-value, 𝐸{} indicates expected value, 𝜖𝑥𝑖 indicates random variable, and all numbers are 

assumed real-valued.  Both 𝐸{} and random variables are defined themselves near the end of the 

definitions, along with the probability density function 𝑝𝑑𝑓𝑋. 

The state vector represents an arbitrary column vector of quantities of interest.  Its value differs from 

the (unknown) true value by a random error vector:   

State vector: 

𝑋 = [𝑋(1) . . 𝑋(𝑛)]𝑇 ≡ [𝑥 . . 𝑥𝑛]𝑇,                   (5.1.1-1) 

an 𝑛𝑥1 column vector; 

Random error vector:  

𝜖𝑋 = [𝜖𝑋(1) . . 𝜖𝑋(𝑛)]𝑇 ≡ [𝜖𝑥 . . 𝜖𝑥𝑛]𝑇,                  (5.1.1-2) 

an 𝑛𝑥1 column vector; 

Mean-value of the random error vector: 

𝜖𝑋̅̅̅̅ = 𝐸{𝜖𝑋} = [𝐸{𝜖𝑥 } . . 𝐸{𝜖𝑥𝑛}]𝑇,                    (5.1.1-3) 

an 𝑛𝑥1 column vector; 

Error covariance matrix of the random error vector about its mean-value: 

𝐶𝑋 = 𝐸{(𝜖𝑋 − 𝜖𝑋̅̅̅̅ )(𝜖𝑋 − 𝜖𝑋̅̅̅̅ )𝑇} = [

. . . . . .

. . 𝐸{(𝜖𝑥𝑖 − 𝜖𝑥̅̅ ̅𝑖)(𝜖𝑥𝑗 − 𝜖𝑥̅̅ �̅�)} . .

. . . . . .
] =               (5.1.1-4) 

[

. . . . . .

. . 𝐶𝑋(𝑖, 𝑗) . .

. . . . . .
] ≡ [

𝜎 
2 𝜎 2

𝜎2 𝜎2
2

. . 𝜎 𝑛

. . 𝜎2𝑛
. . . .

𝜎𝑛 𝜎𝑛2

. . . .

. . 𝜎𝑛
2

],  

an 𝑛𝑥𝑛 matrix. 

The 𝜎𝑖
2 = 𝐸{(𝜖𝑥𝑖 − 𝜖𝑥̅̅ ̅𝑖)

2} are variances about the (component) mean, the 𝜎𝑖 are standard deviations 

about the mean, and the 𝜎𝑖𝑗 = 𝐸{(𝜖𝑥𝑖 − 𝜖𝑥̅̅ ̅𝑖)(𝜖𝑥𝑗 − 𝜖𝑥̅̅ �̅�)} are covariances about the mean.  Note that 

since (𝜖𝑥𝑖 − 𝜖𝑥̅̅ ̅𝑖)(𝜖𝑥𝑗 − 𝜖𝑥̅̅ �̅�) = (𝜖𝑥𝑗 − 𝜖𝑥̅̅ �̅�)(𝜖𝑥𝑖 − 𝜖𝑥̅̅ ̅𝑖) by the properties of real-numbers, the error 

covariance matrix is symmetric by definition. 

Further note that: 

If  𝜖𝑋̅̅̅̅ = 0,  𝐶𝑋 = 𝐸{(𝜖𝑋)(𝜖𝑋)𝑇}, the latter also termed the “second moment”;                 (5.1.1-5) 
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If  𝜖𝑋̅̅̅̅ ≠ 0,  𝐶𝑋 = 𝐸{(𝜖𝑋)(𝜖𝑋)𝑇}- (𝜖𝑋̅̅̅̅ )(𝜖𝑋̅̅̅̅ )𝑇, the latter termed the “square”                (5.1.1-6) 

of the “first moment”. 

The (cumulative) probability distribution function 𝑐𝑑𝑓𝑋 of the random error  vector 𝜖𝑋 is    (5.1.1-7) 

another term for the joint probability distribution of the random variables 𝜖𝑥 , .., 𝜖𝑥𝑛, a scalar function 

of the n-dimensional (component) value 𝜖𝑋, and “loosely” defined as the probability that an arbitrary 

value 𝜖𝑋′ is contained within the n-dimensional interval [(−∞, 𝜖𝑥 ′), . . , (−∞, 𝜖𝑥𝑛′)].  (See Section 

5.1.1.1 for further discussion.) 

A probability density function 𝑝𝑑𝑓𝑋 of the random error vector 𝜖𝑋 is “loosely” defined as the 𝑛-th order 

partial derivative of 𝑐𝑑𝑓𝑋, a scalar function of the n-dimensional value 𝜖𝑋: 

𝑝𝑑𝑓𝑋(𝜖𝑋) =
𝜕𝑛𝑐𝑑𝑓(𝜖𝑋)

𝜕𝜖𝑥1..𝜕𝜖𝑥𝑛
                      (5.1.1-8) 

In Equations (5.1.1-2) – (5.1.1-6), 𝐸{} corresponds to the expected value taken over an (arbitrary) 

probability density function 𝑝𝑑𝑓𝑋,.  For an arbitrary scalar function 𝑔(𝑋), its expected value is defined 

as: 

𝐸{𝑔(𝜖𝑋)} ≡ ∬…∫ 𝑔(𝜖𝑋)𝑝𝑑𝑓𝑋𝑑𝜖𝑥 . . 𝑑𝜖𝑥𝑛
+∞

−∞
,                               (5.1.1-9) 

where the integration is taken over (−∞,+∞) for each of the 𝑛 error components, i.e., 𝑛 joint integrals 

taken over the entire n-dimensional (real-valued) space 𝑅𝑛. 

Thus, the mean-value is simply the expected value of (𝑛 components of) the random vector 𝜖𝑋 and the 

error covariance matrix about the mean-value is the expected value of (𝑛2components of)   (𝜖𝑋 −

𝜖𝑋̅̅̅̅ )(𝜖𝑋 − 𝜖𝑋̅̅̅̅ )𝑇, where 𝜖𝑋̅̅̅̅  is considered a deterministic (pre-computed) statistic, i.e., 𝐶𝑋 =

𝐸{(𝜖𝑋 − 𝜖𝑋̅̅̅̅ )(𝜖𝑋 − 𝜖𝑋̅̅̅̅ )𝑇}. 

The variance of a component of error 𝜖𝑥𝑖 in 𝜖𝑋 corresponds to matrix element 𝐶𝑋(𝑖, 𝑖) ≡ 𝜎𝑖
2.  The 

covariance (not the “covariance matrix”) between two components of error 𝜖𝑥𝑖 and 𝜖𝑥𝑗, in the same 𝜖𝑋, 

corresponds to matrix element 𝐶𝑋(𝑖, 𝑗) ≡ 𝜎𝑖𝑗.  It further defines the correlation (coefficient) 𝜌𝑖𝑗  between 

these two components of error as follows: 

𝜌𝑖𝑗 ≡ 𝜎𝑖𝑗/(𝜎𝑖𝜎𝑗); thus, 𝜎𝑖𝑗 = 𝜌𝑖𝑗𝜎𝑖𝜎𝑗                (5.1.1-10) 

Note that 𝜌𝑖𝑗  is unit-less, and that |𝜌𝑖𝑗| < 1, 𝑖 ≠ 𝑗, as will be demonstrated later. 

  



NGA.SIG.0026.03_1.0_ACCPRED 
 

 
17 

5.1.1.1 Underlying probabilistic foundations 

The definitions presented in Section 5.1.1 are at an “engineering overview” level, and underlying 

probabilistic foundations are not needed for further applications in this or related documents.  However, 

for the sake of completeness, the following (jointly labeled “Equation” (5.1.1.1-1) for convenience) are 

briefly mentioned, with further details found in reference [24], as well as more formal definitions for the 

probability distribution function and the probability density function: 

 There is an underlying Probability Space consisting of the triple                           (5.1.1.1-1) 

{Experiment Space of all possible outcomes, Subsets of all possible collections  

of outcomes or Events (Borel field), the Probability Measure of an arbitrary event}. 

 A random (error) vector consists of a vector of random variables (𝜖𝑥𝑖), each a mapping 

from every outcome in the Experiment Space to a number.  We assume that random 

variables are of the continuous type in this document, but these can be extended to 

include random variables of the discrete type. 

 The above number is assumed to be real-valued in this and related documents, but 

definitions can be augmented in a straightforward manner to include random variables 

as mapping to complex numbers.  Augmentation essentially consists of defining a 

probability density function as a joint density between the real and imaginary parts 

making up the complex numbers, and defining vector and matrix transpose as the 

transpose of the complex conjugate of the vector or matrix.  

5.1.2 Example: scalar Gaussian pdf and related statistics  

The above predictive statistics are further defined/illustrated for 𝑛 = 1 and the common (scalar) 

Gaussian or Normal distribution with probability density function 𝑝𝑑𝑓𝑥 as defined below (the explicit 

error notation “𝜖” was dropped for convenience in the following, a practice sometimes used throughout 

this document; furthermore, 𝑥 ≡ 𝑥 ): 

Given the Gaussian probability density function, 𝑝𝑑𝑓𝑥 ≡
 

𝜎𝑥√2𝜋
𝑒− /2((𝑥−�̅�)/𝜎𝑥)2:                (5.1.2-1)  

 

𝐸{𝑥) = ∫ 𝑥𝑝𝑑𝑓𝑥
+∞

−∞
𝑑𝑥 =

 

𝜎𝑥√2𝜋
∫ 𝑥𝑒− /2((𝑥−�̅�)/𝜎𝑥)2∞

−∞
𝑑𝑥 = �̅�, the mean-value;              (5.1.2-2) 

 

𝐸{(𝑥 − �̅�)2} = ∫ (𝑥 − �̅�)2𝑝𝑑𝑓𝑥
+∞

−∞
𝑑𝑥 =

 

𝜎𝑥√2𝜋
∫ (𝑥 − �̅�)2𝑒− /2((𝑥−�̅�)/𝜎𝑥)2∞

−∞
𝑑𝑥 = 𝜎𝑥

2,                   (5.1.2-3) 

the variance about the mean (the mean and variance are directly embedded in the Gaussian pdf itself); 
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𝑝 = ∫ 𝑝𝑑𝑓𝑥
∗

𝑟𝑒𝑔𝑖𝑜𝑛 𝑅
𝑑𝑥 =

 

𝜎𝑥√2𝜋
∫ 𝑒− /2((𝑥−�̅�)/𝜎𝑥)2𝑑𝑥

∗

𝑟𝑒𝑔𝑖𝑜𝑛 𝑅
,                 (5.1.2-4) 

the probability contained within a region R (line), where the notation “∫ …  𝑑𝑥
∗

𝑟𝑒𝑔𝑖𝑜𝑛 𝑅
”  indicates 

integration over the specified region. 

 

Figure 5.1.2-1: Examples of Gaussian probability density functions for a scalar error x 

In Figure 5.1.2-1 above, the blue curve corresponds to a pdf with mean=0 and standard deviation or 

“sigma” of 1 about the mean; the green curve corresponds to an identical pdf except that the mean=2; 

the red curve corresponds to a mean=0 but a standard deviation of 2.  Note that the standard deviation 

is a measure of the dispersion about the mean. 

And, of course, by definition of a Probability Space, the area under any of the 𝑝𝑑𝑓𝑥 curves above, taken 

over the interval (−∞,+∞), equals 1.  (When taken over the interval (−∞, 𝑥) this is a function of 𝑥 and 

termed the cumulative probability distribution function 𝑐𝑑𝑓𝑥.) 

Note that an arbitrary Gaussian or Normal distribution with mean 𝑚 and standard deviation 𝜎 is 

sometimes designated 𝑁(𝑚, 𝜎). 
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5.1.3 Example: Multi-variate Gaussian pdf and related statistics 

These statistics are now generalized to an arbitrary random (error) vector and multi-variate or multi-

component Gaussian or Normal distribution (and again dropping the explicit error notation “𝜖” for 

convenience): 

Given a pdf of a multi-variate Normal distribution of a random vector 𝑋 = [𝑥 . . 𝑥𝑛]𝑇, 

𝑝𝑑𝑓𝑋 ≡
 

(2𝜋)𝑛/2det (𝐶𝑋)1/2 𝑒− /2((𝑋−�̅�)𝑇𝐶𝑋
−1(𝑋−�̅�))  :                  (5.1.3-1) 

 

𝐸{𝑋} ≡ ∬…∫ 𝑋𝑝𝑑𝑓𝑋𝑑𝑥 . . 𝑑𝑥𝑛
+∞

−∞
=                                (5.1.3-2) 

 

(2𝜋)𝑛/2det (𝐶𝑋)1/2 ∬…∫ 𝑋𝑒− /2((𝑋−�̅�)𝑇𝐶𝑋
−1(𝑋−�̅�))  𝑑𝑥 . . 𝑑𝑥𝑛 = �̅�

+∞

−∞
, 

which is the mean-value of 𝑋.  

(Note: the above is the notational equivalent of the 𝑛𝑥1 column vector [

. .

∬…∫ 𝑥𝑖𝑝𝑑𝑓𝑋𝑑𝑥 . . 𝑑𝑥𝑛
+∞

−∞
. .

].) 

 

𝐸{(𝑋 − �̅�)(𝑋 − �̅�)𝑇} = ∬…∫ (𝑋 − �̅�)(𝑋 − �̅�)𝑇𝑝𝑑𝑓𝑋𝑑𝑥 . . 𝑑𝑥𝑛
+∞

−∞
=               (5.1.3-3) 

 

(2𝜋)𝑛/2det (𝐶𝑋)1/2 ∬…∫ (𝑋 − �̅�)(𝑋 − �̅�)𝑇𝑒− /2((𝑋−�̅�)𝑇𝐶𝑋
−1(𝑋−�̅�))  𝑑𝑥 . . 𝑑𝑥𝑛

+∞

−∞
= 𝐶𝑋, 

which is the covariance of 𝑋 about the mean-value of 𝑋. 

 

(Note: the above is the notational equivalent of the 𝑛𝑥n matrix  

[

. . . . . .

. . ∬…∫ (𝑥𝑖 − �̅�𝑖)(𝑥𝑗 − �̅�𝑗)𝑝𝑑𝑓𝑋𝑑𝑥 . . 𝑑𝑥𝑛
+∞

−∞
. .

. . . . . .
].) 

 

𝑝 =
 

(2𝜋)𝑛/2det (𝐶𝑋)1/2 ∬…∫ 𝑒− /2((𝑋−�̅�)𝑇𝐶𝑋
−1(𝑋−�̅�))  𝑑𝑥 . . 𝑑𝑥𝑛

∗

𝑟𝑒𝑔𝑖𝑜𝑛 𝑅
,               (5.1.3-4) 

which the probability contained within the 𝑛-dimensional region R. 

(In the above equations, the notation “∬…∫ …𝑑𝑥 . . 𝑑𝑥𝑛
+∞

−∞
” indicates integration from −∞ to ∞ over 

each of the variables 𝑥𝑖, 𝑖 = 1, . . , 𝑛; the notation “∬…∫ …𝑑𝑥 . . 𝑑𝑥𝑛
∗

𝑟𝑒𝑔𝑖𝑜𝑛 𝑅
” indicates integration 

within the specified n-dimensional region 𝑅 over each of the variables 𝑥𝑖, 𝑖 = 1, . . , 𝑛.) 
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The following Figures 5.1.3-1 and 5.1.3-2 correspond to a multi-variate Gaussian probability density 

function for two (error) components (𝑛 = 2).   Both pdf’s have a vector mean-value of zero.  The first 

pdf has an 2𝑥2 error covariance matrix with diagonal elements (variance) equal to 1 and zero covariance 

between the two components (correlation=0), the second has the same error covariance matrix but has 

a non-zero covariance corresponding to high positive correlation (correlation coefficient 𝜌 2 = 0.98) 

between the two components. 

 

Figure 5.1.3-1: Two-dimensional Gaussian pdf with zero correlation between components 

 

Figure 5.1.3-2: Two-dimensional Gaussian pdf with high positive correlation between components 
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5.1.4 Conditional expectations and correlation 

We can also define conditional distributions or pdfs as well.  In general, for two components 𝑥 and 𝑦, 

the conditional pdf of 𝑥 given 𝑦 is (and dropping the explicit error notation “𝜖” for convenience): 

𝑝𝑑𝑓(𝑥|𝑦) = 𝑝𝑑𝑓𝑥,𝑦/𝑝𝑑𝑓𝑦                       

(5.1.4-1) 

Assuming a Gaussian joint distribution (aka a bivariate normal distribution) with a mean-value of zero 

and with the value of y given, the conditional pdf equals: 

𝑝𝑑𝑓(𝑥|𝑦) =
 

𝜎𝑥√2𝜋( −𝜌𝑥,𝑦
2 )

𝑒
−

(𝑥−
𝜌𝑥,𝑦𝜎𝑥𝑦

𝜎𝑦
)2

2𝜎𝑥
2(1−𝜌𝑥,𝑦

2 ) , where                   (5.1.4-2) 

the above has a mean-value of 𝜌𝑥,𝑦𝜎𝑥𝑦/𝜎𝑦 and a variance about the mean of 𝜎𝑥
2(1 − 𝜌𝑥,𝑦

2 ). 

Thus, given that the specific (joint) 𝑝𝑑𝑓𝑋 = 𝑝𝑑𝑓𝑥,𝑦corresponding to Figure 5.1.3-2, and that 𝑦 has a value 

of 1, the conditional pdf corresponds to Figure 5.1.4-1 below. 

 

Figure 5.1.4-1: Conditional pdf of x given y equals 1 

The conditional pdf has a mean-value of 
𝜌𝑥,𝑦𝜎𝑥𝑦

𝜎𝑦
= 0.98 and variance about the mean-value of 

𝜎𝑥
2(1 − 𝜌𝑥,𝑦

2 ) = 0.0396 or “sigma”≅ 0.2.  That is, the expected value of 𝑥 is very close to the given 

value of 𝑦 with very little uncertainty (dispersion).  Obviously, the given or “a priori” correlation 𝜌𝑥,𝑦 =

0.98 has a tremendous influence on the results. 
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Another way to look at correlation: even though we do not know the value of either 𝑥 or 𝑦 now, if they 

are highly correlated, and given the value of 𝑦 (or 𝑥) in the future, we can then accurately predict that 

the value of 𝑥 is a positive scalar multiple of the given value 𝑦 (negative scalar multiple, if the correlation 

is highly negative).  The scalar multiple approaches 1 (or -1) if the correlation is high and the variance of 

the two components are approximately the same value.  This is one illustration of the importance of 

correlation, and the need to reliably “capture it” within the appropriate error covariance matrix. 

5.1.5 Coordinate Systems 

Note that the underlying (assumed) Cartesian coordinate system for representation of the random error 

vector (Equation (5.1.1-2)) may differ from that for the state vector (Equation (5.1.1-1)) itself for 

practical modeling of predictive errors.  This is perfectly valid as long as there is an associated 

deterministic transformation between the two systems.  For example, if the state vector contains 3d 

location, it may be relative to the WGS84 (earth-centered, earth-fixed) system, whereas the coordinate 

system for its errors may be relative to a local tangent plane (ENU) system where component errors may 

be modeled as uncorrelated when appropriate.   Note that if a state vector 𝑋 in WGS84 corresponds to 

the state vector 𝑋′ in ENU, we have: 

𝑋′ = Ω𝑋 + 𝑋0, where                    (5.1.5-1) 

Ω and 𝑋0 are a deterministic 3𝑥3 rotation matrix and 3𝑥1 vector offset, respectively. 

Therefore, the random error vector expressed in ENU is simply the following function of the random 

error vector expressed in WGS84, which can be accounted for in “rigorous error propagation” (see 

Equation (5.2.2-1) and Section 5.6): 

𝜖𝑋′ = Ωϵ𝑋                     (5.1.5-2) 

 

5.2 Error Covariance Matrices: Properties and Rigorous Descriptors 
This section of the document makes no assumptions regarding the underlying probability distribution of 

errors, i.e., is applicable whether a Gaussian distribution or not.  It details the error covariance matrix 

and its various properties and descriptors. 

Assume a single 𝑛𝑥1 state vector, and its corresponding (previously defined) 𝑛𝑥1 random error vector, 

its mean-value, and 𝑛𝑥𝑛 valid error covariance matrix about the mean:  

𝜖𝑋 = [𝜖𝑋(1) . . 𝜖𝑋(𝑛)]𝑇 ≡ [𝜖𝑥 . . 𝜖𝑥𝑛]𝑇;       (5.2-1) 

𝜖𝑋̅̅̅̅ = [𝜖𝑋̅̅̅̅ (1) . . 𝜖𝑋̅̅̅̅ (𝑛)]𝑇 ≡ [𝜖𝑥 ̅̅ ̅̅ . . 𝜖𝑥𝑛̅̅ ̅̅ ̅]𝑇;       (5.2-2) 

𝐶𝑋 = [

. . . . . .

. . 𝐸{(𝜖𝑥𝑖 − 𝜖𝑥̅̅ ̅𝑖)(𝜖𝑥𝑗 − 𝜖𝑥̅̅ �̅�)} . .

. . . . . .
] ≡ [

𝜎 
2 𝜎 2

𝜎2 𝜎2
2

. . 𝜎 𝑛

. . 𝜎2𝑛
. . . .

𝜎𝑛 𝜎𝑛2

. . . .

. . 𝜎𝑛
2

].    (5.2-3) 



NGA.SIG.0026.03_1.0_ACCPRED 
 

 
23 

A valid 𝑛𝑥𝑛 error covariance matrix is a wonderful object.   It is completely characterized/defined, in 

conjunction with Equation (5.2-3), as follows:  

 Any symmetric, 𝑛𝑥𝑛 positive definite matrix is a valid 𝑛𝑥𝑛 error covariance matrix   (5.2-4) 

 A valid 𝑛𝑥𝑛 error covariance matrix is a symmetric, 𝑛𝑥𝑛  positive definite matrix.   

From this top-level characterization/definition, we have the following properties for a valid 𝑛𝑥𝑛 error 

covariance matrix 𝐶𝑋 (the following properties are jointly labeled “Equation” (5.2-5) for convenience): 

 It is invertible (𝐶𝑋
−  exists)          (5.2-5) 

 It has strictly positive diagonal entries (error variances) 

 It has a strictly positive determinant (det(𝐶𝑋) > 0) 

 The absolute value of the correlation coefficient for an arbitrary pair of distinct error 

components is less than 1 

 It has 𝑛 (not necessarily distinct) strictly positive (>0) eigenvalues and corresponding 

eigenvectors 

 Its trace and determinant are the sum and product of its eigenvalues, respectively 

 An orthonormal 𝑛𝑥𝑛 (rotation) matrix Φ, consisting of the unit eigenvectors as matrix rows, 

maps the original coordinate system to the eigenvector-aligned coordinate system 

 The original error covariance matrix 𝐶𝑋 can be represented as an 𝑛𝑥𝑛 diagonal error covariance 

matrix 𝐷 with the eigenvalues as diagonals in the eigenvector-aligned  Cartesian coordinate 

system , i.e.,  𝐷 = Φ𝐶𝑋Φ𝑇 

In this document, unless specifically stated otherwise, an error covariance matrix 𝐶𝑋 is assumed valid.   

The actual formal definition of a valid error covariance matrix (as opposed to its properties or 

characteristics) follows from the definitions and interrelationships between a positive semi-definite 

matrix, a positive definite matrix, and the expected value operator as detailed in the following section. 

5.2.1 Formal derivation/definition of a valid error covariance matrix  

From linear algebra, an arbitrary 𝑛𝑥𝑛 matrix 𝑄 is positive semi-definite by definition if the following 

scalar is always positive (non-negative): 

𝑍𝑇𝑄𝑍 = ∑ 𝑧𝑖𝑖,𝑗 𝑧𝑗𝑄𝑖𝑗 ≥ 0, for all 𝑛𝑥1 column vectors 𝑍.                (5.2.1-1) 

An 𝑛𝑥𝑛 matrix 𝑄 is positive definite by definition if the following scalar is always strictly positive: 

𝑍𝑇𝑄𝑍 = ∑ 𝑧𝑖𝑖,𝑗 𝑧𝑗𝑄𝑖𝑗 > 0,                    (5.2.1-2) 

for all 𝑛𝑥1 column vectors 𝑍 not identically equal to zero. 
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An 𝑛𝑥𝑛 error covariance matrix 𝐶𝑋 is guaranteed positive semi-definite or “pseudo-valid” by the linear 

properties of the expectation operator and the fact that the absolute value of an arbitrary quantity is 

always ≥ 0: 

𝐸{|𝑧 (𝜖𝑥 − 𝜖𝑥̅̅ ̅ )+. . +𝑧𝑛(𝜖𝑥𝑛 − 𝜖𝑥̅̅ ̅𝑛)|2} =                 (5.2.1-3)  

∑ 𝑧𝑖𝑖,𝑗 𝑧𝑗𝐸{(𝜖𝑥𝑖−𝜖𝑥𝑖̅̅ ̅̅ )(𝜖𝑥𝑗 − 𝜖𝑥𝑗̅̅ ̅̅ )} = 𝑍𝑇𝐶𝑋𝑍 ≥ 0. 

However, we further add the stipulation that all (centered) random variables (𝜖𝑥𝑖 − 𝜖𝑥̅̅ ̅𝑖 ) are to be 

linearly independent, i.e., by the definition of linearly independent [24]: 

𝐸{|𝑧 (𝜖𝑥 − 𝜖𝑥̅̅ ̅ )+. . +𝑧𝑛(𝜖𝑥𝑛 − 𝜖𝑥̅̅ ̅𝑛)|2} > 0, for 𝑧𝑖, 𝑖 = 1, . . , 𝑛, not all zero;              (5.2.1-4)  

and thus, ∑ 𝑧𝑖𝑖,𝑗 𝑧𝑗𝐸{(𝜖𝑥𝑖−𝜖𝑥𝑖̅̅ ̅̅ )(𝜖𝑥𝑗 − 𝜖𝑥𝑗̅̅ ̅̅ )} = 𝑍𝑇𝐶𝑋𝑍 > 0, i.e., 𝐶𝑋 is positive definite.             (5.2.1-5) 

(Note: linear independence of (centered) random variables is also equivalent to linear independence of 

random variables, since one is just the other plus a deterministic offset.) 

With this added (required) property of linear independence, the error covariance matrix 𝐶𝑋  is valid, i.e., 

positive definite and invertible.   

Further note that linear independence between random variables does not imply that they are not 

correlated.  However, it does imply that they are not “totally” correlated.  This is defined/derived as 

follows.  From Equation (5.2.1-4) and for 𝑧𝑖=1 and 𝑧𝑗 = ±1: 

 𝐸 {(𝜖𝑥𝑖 − 𝜖𝑥̅̅ ̅𝑖)
2 ± 2(𝜖𝑥𝑖 − 𝜖𝑥̅̅ ̅𝑖)(𝜖𝑥𝑗 − 𝜖𝑥̅̅ �̅�) + (𝜖𝑥𝑗 − 𝜖𝑥̅̅ �̅�)

2
} =                 (5.2.1.6)  

𝜎𝑖
2 ± 2𝜎𝑖𝑗 + 𝜎𝑗

2 = 𝜎𝑖
2 ± 2𝜌𝑖𝑗𝜎𝑖𝜎𝑗 + 𝜎𝑗

2 > 0,      

which implies that 𝜌𝑖𝑗 < 1 if 𝑧𝑗 = −1, and −1 < 𝜌𝑖𝑗if 𝑧𝑗 = 1, or that: 

 |𝜌𝑖𝑗| < 1 ,                       (5.2.1.7) 

for an arbitrary pair of component errors.  This is a necessary condition for a valid error covariance 

matrix, but not a sufficient condition as will be discussed later. 

Linear independence, and hence a positive definite error covariance matrix, is a common 

assumption/definition.  It guarantees the existence of 𝐶𝑋
− , which is required for many related 

definitions and practical applications, such as: (1) the definition of the multi-variate Gaussian pdf, (2) 

computation of the error ellipsoid (Section 5.3), and computation of the scalar accuracy metrics LE, CE, 

and SE (Section 5.4). 
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5.2.2 Additional properties of related matrices 

The properties listed in Equation (5.2-5) for valid error covariance matrices are straightforward, easily 

stated, and very useful.  Another property for valid error covariance matrices that is not quite as 

“straightforward”, but certainly useful, particularly regarding the propagation of error covariance 

matrices (Section 5.6), is as follows: 

 Any “new” 𝑚𝑥1 random error vector defined as 𝜖𝑋′ = Ω 𝜖𝑋, and thus 𝜖𝑋′̅̅ ̅̅̅ = Ω 𝜖𝑋̅̅̅̅  ,     (5.2.2-1) 

where the 𝑚𝑥𝑛 mapping matrix Ω is full rank, has a valid 𝑚𝑥𝑚 error covariance  

matrix equal to 𝐶𝑋′ ≡ 𝐸{(𝜖𝑋′ − 𝜖𝑋′̅̅ ̅̅̅)(𝜖𝑋′ − 𝜖𝑋′̅̅ ̅̅̅ )𝑇) = Ω𝐶𝑋Ω𝑇.   

o If the mapping matrix is not full rank (e.g., 𝑚 > 𝑛), the resultant “pseudo-valid” error 

covariance matrix is still positive semi-definite, i.e., positive eigenvalues (>=0) but not 

invertible. 

Additional properties of valid error covariance and related matrices are: 

 If the 𝑛𝑥𝑛 matrix 𝐴 is a valid error covariance matrix, its 𝑛𝑥𝑛 inverse 𝐴−                           (5.2.2-2)     

is also a valid error covariance matrix since it is symmetric and positive definite  

as well.  In addition, its eigenvalues are the reciprocal of the eigenvalues of 𝐴.  

 If the 𝑛𝑥𝑛 matrix 𝐴 is a valid error covariance matrix and the 𝑛𝑥𝑛 matrix 𝐵             (5.2.2-3)  

is a pseudo-valid (or valid) error covariance matrix, then the matrix 𝐴 + 𝐵 

is a valid error covariance matrix.  

 If the 𝑛𝑥𝑛 matrix 𝐴 is a valid error covariance matrix and 𝑌 an arbitrary 𝑛𝑥1                     (5.2.2-4) 

vector, the 𝑛𝑥𝑛 matrix 𝐴′ = 𝐴 + 𝑌𝑌𝑇 is a valid 𝑛𝑥𝑛 error covariance matrix,  

based on Equation (5.2.2-3) and the following: 

o 𝑌𝑌𝑇 is symmetric and positive semi-definite (pseudo-valid error covariance matrix), 

since it is obviously symmetric and for an arbitrary 𝑛𝑥1 vector 𝑍, 𝑍𝑇𝑌 is a scalar 𝑠, and 

𝑍𝑇𝑌𝑌𝑇𝑍 equals 𝑠2 ≥ 0; hence, 𝑌𝑌𝑇 is positive semi-definite by definition. 

 If the 𝑛𝑥𝑛 matrix 𝐴 is a valid error covariance matrix, the 𝑛𝑥𝑛 matrix 𝐵 = 𝑘𝐴                   (5.2.2-5)   

is also a valid error covariance matrix, where the scalar 𝑘 > 0 and the  

multiplication 𝑘𝐴 corresponds to multiplying each element of 𝐴 by the scalar 𝑘. 

Further note, that virtually all commercial pseudo-code (e.g., MATLAB) have straight-forward functions 

to determine eigenvalues and corresponding eigenvectors, as well as other functions from linear algebra 

and probability /statistics.   The linear algebra related properties/proofs of Sections 5.2, 5.2.1, and 5.2.2 

are found or can be readily derived via reference [22]. 

5.2.3 Possible issues with the mean-value 

In Section 5.2, we defined the 𝑛𝑥1 mean-value 𝜖𝑋̅̅̅̅  and the 𝑛𝑥𝑛 error covariance matrix 𝐶𝑋 about the 

mean-value.  Since, in this document, these are predictive statistics, the mean-value is typically assumed 

zero and need not be accounted for explicitly.  Also, if it were non-zero, in many instances the 

corresponding vector 𝑋 could be corrected “ahead of time”, such as for a satellite metadata error 

(“bias”) corrected for during preprocessing at a ground (collection) station; and thus, the mean-value 𝜖𝑋̅̅̅̅  

subsequently zero thereafter. 
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In summary, typically for predictive statistics within the NSG, either: (1) 𝜖𝑋̅̅̅̅  with a value of zero and 𝐶𝑋 

are both accounted for/disseminated explicitly, or (2) only 𝐶𝑋 is accounted for/disseminate explicitly, 

with 𝜖𝑋̅̅̅̅  assumed zero.   

However, if this is not the case, the equations in this document can still be utilized by various 

modules/applications as they account (sometimes as an option) for a non-zero mean-value.  If this is not 

possible due to design limitations (i.e., a non-zero mean-value of random error cannot be 

disseminated/implemented by various modules/applications), we can mitigate this problem as follows: 

{ 𝜖𝑋̅̅̅̅ ≠ 0 and 𝐶𝑋 } → { 𝜖𝑋̅̅̅̅  assumed zero and the original 𝐶𝑋 modified to  (𝐶𝑋 + 𝜖𝑋̅̅̅̅  𝜖𝑋̅̅̅̅ 𝑇) }             (5.2.3-1) 

The original (left side of the above equation) is statistically correct, and the right side an approximation 

to be used only if necessary, i.e., this technique is a “last resort” to account for a non-trivial mean-value 

when confronted with design limitations.  We know, by Equations (5.2.2-2) and (5.2.2-3), that the 

approximation corresponds to a valid error covariance matrix (symmetric and positive definite).  The 

form of the approximation follows from Equation (5.1.1-6). 

In the upcoming Section 5.3 on error ellipsoids, Figure 5.3.1-5 presents an example of Equation (5.2.3-1) 

in terms of corresponding error ellipsoids. 

5.2.4 Assurance of valid and realistic error covariance matrices required for practical 

applications 

A candidate error covariance matrix is either valid (positive definite), pseudo-valid (positive semi-

definite), or invalid (not positive semi-definite).  Of course, by our definitions, a valid error covariance 

matrix is also positive semi-definite, but a pseudo-valid error covariance matrix is not positive definite.  

And as such, it is not invertible, a property required for many applications, such as weighting 

measurements in an estimator.   

A candidate error covariance matrix is invalid if it has one or more negative eigenvalues.  As such, there 

is some linear combination of its underlying error components that has a negative variance – physically 

impossible, and a “time-bomb” for any application attempting to use it. 

Thus, it certainly made sense to define a valid error covariance matrix as a symmetric and positive 

definite matrix.  And hopefully, it is easy to identify a “valid” versus “pseudo-valid” versus “invalid” error 

covariance matrix.  Figure 5.2.4-1 presents the simplest possible case for all three categories. 

 

 

    
  
  

    =  
  
 − 

  

Pseudo-Valid Invalid Valid 

  =  
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Figure 5.2.4-1: Valid, pseudo-valid, and invalid error covariance matrices. 

Of course, with more realistic applications, it is not so easy to identify validity without computing 

corresponding eigenvalues.  For example, the 3x3 error covariance matrix on the left side of Figure 

5.2.4-2 is valid, while the one on the right side is invalid.  The latter’s correlation coefficients are 

statistically inconsistent with each other.  The first component of error is highly correlated (statistically 

similar; correlation coefficient equal to 0.9) with the second, and the second component of error is 

highly correlated with the third.  This would imply that the first and third components must be 

reasonably correlated as well ( > 0.62 ), but they are not.  Hence, the error covariance matrix is invalid, 

i.e., it has a negative eigenvalue.  This is true even though the necessary condition that the absolute 

values of all correlations were less than 1 was met.  (Only for a 2𝑥2 error covariance matrix is this 

condition sufficient, assuming of course, diagonal elements greater than zero.) 

 

Figure 5.2.4-2: Valid and invalid error covariance matrices 

The above example (Figure 5.2.4-2) was also more realistic than the first example (Figure 5.2.4-1) in that 

most error covariance matrices of interest are larger than 2𝑥2 matrices (3𝑥3 to 10000𝑥10000 not 

unrealistic), and usually non-diagonal, particular if an output from an estimator (e.g., Kalman Filter or 

WLS).  The off-diagonal components (correlations) are extremely important for the characterization of 

predicted accuracies as well as optimal performance of subsequent processing – they are not to be 

ignored or removed.  Methods for the generation, dissemination, and representation of error covariance 

matrices presented in this document insure valid and full error covariance matrices. 

Finally, although we consider a valid error covariance matrix as a necessary condition, we also want a 

“realistic” error covariance matrix - one that reasonably approximates the “true” and generally unknown 

error covariance matrix that corresponds to the true error.  This, of course, is a challenge.  Throughout 

this document we present various methods to reasonably model errors and to assemble corresponding 

error covariance matrices.  Of course, modeling is “user-specific” and usually iterative, in that 

corresponding predictive statistics need verification with sample statistics/”ground truth”, and the 

predictive error model subsequently “tuned”.  QC checks in various estimators that rely on predictive 

statistics can also be employed.  These topics are covered more deeply in TGD 1 (Overview and 

Methodologies), TGD 2d (Estimators and Quality Control), and TGD 2c (Specification and Validation). 
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5.3 Error Ellipsoids 
This section of the document assumes that the underlying probability distribution of errors is Gaussian 

in order to assign probabilities to the error ellipsoids. 

An error ellipsoid is a graphical representation of the error covariance CX and an intuitive representation 

of predicted accuracy.  It displays, among other things, the directions of greatest and least expected 

error (magnitude).   It is typically defined for three or fewer components of error for visualization. 

The error ellipsoid presented in Figure 5.3-1 corresponds to geographic 3d location error as represented 

in a local tangent plane (ENU) Cartesian coordinate system.  It was computed as a 90% (0.9p) error 

ellipsoid, which means that there is a 90% probability that the location (solution) error is within the 

ellipsoid.  Alternatively, if the 90% error ellipsoid is centered at the target solution X instead of zero, 

there is a 90% probability that the true target location is within the ellipsoid.  When centered at the 

target solution, the error ellipsoid is typically called a confidence ellipsoid.  We are 90% confident that 

the true target location is within the 90% confidence ellipsoid. 

 

Figure 5.3-1: The 90% (0.9p) probability error ellipsoid corresponding and equivalent to 𝐶𝑋 

The specific underlying error covariance matrix in the above example is equal to: 

𝐶𝑋 = [

𝜎𝑥
2 𝜌𝑥𝑦𝜎𝑥𝜎𝑦 𝜌𝑥𝑧𝜎𝑥𝜎𝑧

. 𝜎𝑦
2 𝜌𝑦𝑧𝜎𝑦𝜎𝑧

. . 𝜎𝑧
2

] =  
102 0.75 ∙ 10 ∙ 12 0.95 ∙ 10 ∙ 9
. 122 0.8 ∙ 12 ∙ 9
. . 92

 .   (5.3-1) 

(Note: the above is an error covariance matrix relative to a single 3𝑥1 state vector error 𝜖𝑋 =

[𝜖𝑥 𝜖𝑥2 𝜖𝑥3]𝑇 ≡ [𝜖𝑥 𝜖𝑦 𝜖𝑧]𝑇.) 
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The general equation for an error ellipsoid is: 

𝜖𝑋𝑇𝐶𝑋
− 𝜖𝑋 = 𝑑2,           (5.3-2) 

where 𝜖𝑋 is 𝑛𝑥1, 𝐶𝑥 is 𝑛𝑥𝑛, 𝑛 an integer and typically 1 ≤ 𝑛 ≤ 3, 𝑑 a positive scalar, and the mean-

value 𝜖𝑋̅̅̅̅  or the error ellipsoid origin is assumed 0. 

Figure 5.3-2 presents a corresponding summary of the general equation for different values of 𝑛. 

 

Figure 5.3-2: General Equation for the Error Ellipsoid 

This general equation is both simple yet elegant.  However, the key to its use and interpretation is the 
value of the “distance” or normalized radius 𝑑 (unitless) 

  

                            The general equation for an error ellipsoid is given by:  𝜖𝑋𝑇𝐶𝑋
−1𝜖𝑋 = 𝑑2 

For dim 𝑛 = 1:                        For dim 𝑛 = 2:                             For dim 𝑛 = 3:  

𝜖𝑋 = 𝜖𝑥                                  𝜖𝑋 = [𝜖𝑥 𝜖𝑦]𝑇                       𝜖𝑋 = [𝜖𝑥 𝜖𝑦 𝜖𝑧]𝑇  

         𝐶𝑋 = [𝐸{𝜖𝑥2}]        𝐶𝑋 =  
𝐸{𝜖𝑥2} 𝐸{𝜖𝑥𝜖𝑦}

. 𝐸{𝜖𝑦2}
             𝐶𝑋 = [

𝐸{𝜖𝑥2} 𝐸{𝜖𝑥𝜖𝑦} 𝐸{𝜖𝑥𝜖𝑧}

. 𝐸{𝜖𝑦2} 𝐸{𝜖𝑦𝜖𝑧}

. . 𝐸{𝜖𝑧2}

] 
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Assuming a Gaussian (multi-variate) probability distribution of errors (i.e., the normal or “bell-shaped” 
distribution of errors), various values of the normalized radius d correspond to various probabilities that 
the n-dimensional solution error lies within the interior of the error ellipsoid.  Tables 5.3-1 and 5.3-2 
present the correspondence between probability p, normalized radius or distance d, and dimension n.  
Note: when n = 2 and n = 1, the ellipsoid “collapses” to an ellipse and line, respectively. 

Table 5.3-1 Distance d versus probability p and dimension n 

 
 

Table 5.3-2 Probability p versus distance d and dimension n 

 
 

Therefore, for example, the 90% error ellipsoid (n=3) presented in Figure 5.3-1 corresponds to the 

equation 𝜖𝑋𝑇𝐶𝑋
− 𝜖𝑋 = (2.5003)2. 

The entries for the above tables were derived via the equations detailed in Section 5.3.2. 

5.3.1 Error Ellipsoid Examples 

Let n=2, and 𝐶𝑋 =  
4 2
2 3

  meters-squared.  The error ellipsoid is an ellipse whose boundary is specified 

by   𝜖𝑋𝐶𝑋
− 𝜖𝑋𝑇 = 𝑑2 or more specifically, since  𝜖𝑋𝑇 = [𝜖𝑥 𝜖𝑦] and 𝐶𝑋

− =  
3/8 −1/4

−1/4 1/2
 : 

(3/8)𝜖𝑥2 − 2(1/4)𝜖𝑥𝜖𝑦 + (1/2)𝜖𝑦2 = 𝑑2                  (5.3.1-1) 

This is an equation for an ellipse and guaranteed valid since  𝐶𝑋 is positive definite, and thus, 

𝑑𝑒𝑡(𝐶𝑋
− ) > 0.  

  

probability p n=1 n=2 n=3

0.5 0.6745 1.1774 1.5382

0.9 1.6449 2.1460 2.5003

0.95 1.9600 2.4477 2.7955

0.99 2.5758 3.0349 3.3682

0.999 3.2905 3.7169 4.0336

distance d n=1 n=2 n=3

1 0.6827 0.3935 0.1987

2 0.9545 0.8647 0.7385

3 0.9973 0.9889 0.9707
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Figure 5.3.1-1 plots the error ellipse corresponding to 𝑑 = 1, which is often referred to as the standard 

error ellipse and has a probability level of only 𝑝 = 0.3935  per Table 5.3-2.  Figure 5.3.1-2 plots the 

error ellipse corresponding to 𝑑 = 1.1774, with a probability level 𝑝 = 0.50  per Table 5.3-1.    

 
Figure 5.3.1-1: Error Ellipse (red) with d=1 and p=0.39 (often called standard error ellipse) 

 

Figure 5.3.1-2: Error Ellipse (red) with d=1.1774 and p=0.50 

The magnitude and direction of the semi-major axis of the first ellipse corresponds to the square root of 

the maximum eigenvalue and its (unit) eigenvector from the error covariance matrix 𝐶𝑋, respectively.  
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Similarly, the semi-minor axis corresponds to the square root of the minimum eigenvalue and its (unit) 

eigenvector.  These are shown as the magenta lines (vectors) in the plot.   

If 𝑑 ≠ 1, only the directions match, as illustrated in the second ellipse.  In general, the magnitude of the 

semi-major and minor-axis equal 𝑑√𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑚𝑎𝑥  and 𝑑√𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑚𝑖𝑛, respectively. 

The above plots implemented Equation (5.3.1-1), expressing 𝜖𝑦 as a function of 𝜖𝑥 using the quadratic 

formula: 

𝜖𝑦 = (𝜖𝑥 ± √−2𝜖𝑥2 + 8𝑑2)/2, 𝜖𝑥 = −2,… ,2, where                   (5.3.1-2) 

the end points in the range for 𝜖𝑥 correspond to a value of zero under the square-root, i.e., a single 

value for  𝜖𝑦.   

The above error ellipses can also be rendered “more naturally” using an eigenvector aligned coordinate 

system followed by a rotation back to the original Cartesian coordinate system – see Section 5.3.4. 

We now present additional 3D error ellipsoids ( n = 3 ) corresponding to the specific (symmetric) 3  3 

error covariance presented in Equation (5.3-1). The error ellipsoids presented in Figure 5.3.1-3 

correspond to this error covariance but to two different probability levels – 90% and 50%.  The 90% 

error ellipsoid on the left is significantly larger (more volume) than the 50% error ellipsoid on the right, 

but has the same shape.  Note that with both ellipsoids, we can “see” how uncertainty varies with 

direction. 

   

Figure 5.3.1-3: 90% and 50% error ellipsoids 

 

Figure 5.3.1-4 illustrates the significance of (intra-state vector) correlation (  ) between the various 

components.  The left side of the figure presents the 90% and 50% error ellipsoids again but places them 

side by side for ease of comparison.  The right side of the figure presents the same error ellipsoids but 

with the off-diagonal elements of the covariance matrix mistakenly ignored, i.e.,  = 0 for the various 
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cross-components.  Note the incorrect shape of the error ellipsoids generated without correlations and 

how this leads to significant misunderstanding of which points may be with in the 90% (or 50%) error 

ellipsoid. 

   

Figure 5.3.1-4:  90% and 50% error ellipsoids generated with and without correlations 

 

Finally, as a reminder, we have assumed that the error 𝜖𝑋 has a mean-value of zero, as typically the 

case.  If not, simply modify Equation (5.3-2) for the error ellipsoid from 𝜖𝑋𝑇𝐶𝑋
− 𝜖𝑋 to: 

 (𝜖𝑋 − 𝜖𝑋̅̅̅̅ )𝑇𝐶𝑋
− (𝜖𝑋 − 𝜖𝑋̅̅̅̅ ),                    (5.3.1-3) 

where 𝜖𝑋̅̅̅̅  is the mean-value. 

For example, Figure 5.3.1-5 plots three 0.9p ellipses.  The first two ellipses have the same error 

covariance matrix about the mean-value, but the first (red) has a mean-value of zero and the second 

(blue) has a non-zero mean-value which becomes the ellipse origin.  The corresponding predictive 

statistics for these ellipses are: 

(1) 𝜖𝑋̅̅̅̅ = 0, 𝐶𝑋 =  
2 1
1 1

 ,  (2) 𝜖𝑋̅̅̅̅ = [0.1 2]𝑇, 𝐶𝑋 =  
2 1
1 1

                (5.3.1-4) 

The third ellipse (teal) corresponds to a “mean-value zero” approximation of the second’s predictive 

statistics (see Section 5.2.3): 

(3) 𝜖𝑋̅̅̅̅ = 0, 𝐶𝑋 =  
2 1
1 1

 +  
0.1
2

 [0.1 2]                 (5.3.1-5) 
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Figure 5.3.1-5: Three related error ellipses: blue differs from red due to a non-zero mean-value of error 

(blue ellipse origin); teal corresponds to a “mean-value zero approximation” of blue; semi-major and 

semi-minor axis included with each ellipse 

5.3.2 Derivation of relationship between probability p & ellipsoidal normalized distance d 

 
The following details how the values in Table 5.3-1 and Table 5.3-2 were generated, and therefore, how 
to generate additional entries corresponding to different probability levels, if so desired.   
 
Let us assume that 𝑋 and 𝐶𝑋 correspond to a multivariate mean-zero Gaussian random variable (and 
dropping the explicit error notation 𝜖𝑋 for convenience).  We will determine the probability that the 
multi-variate random variable resides within the ellipsoidal boundary in 𝑅𝑛 defined by the quadratic 
form 𝑋𝑇𝐶𝑋

− 𝑋 = 𝑑2,  where n=1, 2, or 3, and the ellipsoidal “radius” 𝑑 is specifiable.  In general, the 
probability equals: 
 

𝑝 =
 

(2𝜋)𝑛/2det (𝐶𝑋)1/2 ∭ 𝑒− /2(𝑋𝑇𝐶𝑋
−1𝑋)  𝑑𝑥 . . 𝑑𝑥𝑛

∗

𝑋𝑇𝐶𝑋
−1𝑋≤𝑑2  ,                                                                (5.3.2-1)  

 
where the notation above specifies integration over the region 𝑋𝑇𝐶𝑋

− 𝑋 ≤ 𝑑2 in 𝑅𝑛. 
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Let us now evaluate the above for the explicit cases n=1, 2, and 3, and assume that 𝑋 and 𝐶𝑋 correspond 
to representation by an eigenvector basis and eigenvalues (𝜆) for simplicity (the above formula is 
applicable to either representation), i.e.,  
 

𝐸{𝑋𝑋𝑇} = 𝐶𝑋 =  
𝜆 0 0
0 . . 0
0 0 𝜆𝑛

 , and 𝜆 = 𝜎𝑥
2, 𝜆2 = 𝜎𝑦

2, 𝜆3 = 𝜎𝑧
2. 

n=1: 
 

𝑝 =
 

√2𝜋𝜎𝑥
∫ 𝑒− /2(𝑥2/𝜎𝑥

2)∗

(
𝑥2

𝜎𝑥
2)≤𝑑2

𝑑𝑥 =
 

√2𝜋
∫ 𝑒− /2(𝑥2)𝑑𝑥

∗

𝑥2≤𝑑2 =
2

√𝜋
∫ 𝑒−𝑥2

𝑑𝑥
𝑑/√2

0
≡ erf (𝑑/√2),  (5.3.2-2) 

 
where the above series of integrals are equivalent and reflect change of variables.   
 
The integral “erf” is called the “error function”, a well-known function that has no closed form solution, 
but whose values are tabulated in great detail in many books, can be approximated by numerical 
integration, and is available in most pseudo-code (e.g., MATLAB) as a function call.  Its inverse “erfinv” is 
also available in most pseudo-code as a function call. 
 

Thus, given the desired value 𝑑, the corresponding 𝑝 = erf (
𝑑

√2
) ;                (5.3.2-3) 

or given the desired value  𝑝, the corresponding 𝑑 = √2 𝑒𝑟𝑓𝑖𝑛𝑣(𝑝). 
 
n=2: 

𝑝 =
 

2𝜋𝜎𝑥𝜎𝑦
∬ 𝑒

− /2(
𝑥2

𝜎𝑥
2+

𝑦2

𝜎𝑦
2)

𝑑𝑥𝑑𝑦
∗
𝑥2

𝜎𝑥
2+

𝑦2

𝜎𝑦
2≤𝑑2

=
 

2𝜋
∬ 𝑒− /2(𝑥2+𝑦2)𝑑𝑥𝑑𝑦

∗

𝑥2+𝑦2≤𝑑2               (5.3.2-4) 

Switching to polar coordinates, 𝑥 = 𝑟𝑐𝑜𝑠(𝜃), 𝑦 = sin(𝜃) , 𝑑𝑥𝑑𝑦 = 𝑟𝑑𝑟𝑑𝜃, we have: 

𝑝 =
 

2𝜋
∫ ∫ 𝑒− /2(𝑟2)𝑑

0

2𝜋

0
𝑟𝑑𝑟𝑑𝜃 =

 

2𝜋
∫ (−𝑒−

𝑑2

2 + 𝑒02𝜋

0
)𝑑𝜃 = (1 − 𝑒−

𝑑2

2 ).               (5.3.2-5) 

Thus, given the desired value 𝑑, the corresponding 𝑝 = (1 − 𝑒−
𝑑2

2 ) ;                (5.3.2-6) 

or given the desired value  𝑝, the corresponding 𝑑 = √−2  𝑙𝑜𝑔𝑒(1 − 𝑝). 

 

n=3: 

𝑝 =
 

(2𝜋)3/2𝜎𝑥𝜎𝑦𝜎𝑧
∭ 𝑒

− /2(
𝑥2

𝜎𝑥
2+

𝑦2

𝜎𝑦
2+

𝑧2

𝜎𝑧
2 )

𝑑𝑥𝑑𝑦𝑑𝑧
∗
𝑥2

𝜎𝑥
2+

𝑦2

𝜎𝑦
2+

𝑧2

𝜎𝑧
2 ≤𝑑2

=               (5.3.2-7) 

 

(2𝜋)3/2 ∭ 𝑒− /2( 𝑥2+𝑦2+ 𝑧2)𝑑𝑥𝑑𝑦𝑑𝑧
∗

𝑥2+𝑦2+ 𝑧2 ≤𝑑2 . 
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Switching to spherical coordinates, 

 𝑥 = 𝑟𝑠𝑖𝑛(𝜙) cos(𝜃) , 𝑦 = 𝑟𝑠𝑖𝑛(𝜙) sin(𝜃) , 𝑧 = 𝑟𝑐𝑜𝑠(𝜃), 𝑑𝑥𝑑𝑦𝑑𝑧 = 𝑟2 sin(𝜙) 𝑑𝑟𝑑𝜙𝑑𝜃, we have: 

𝑝 =
 

(2𝜋)3/2 ∫ ∫ ∫ 𝑒− /2(𝑟2)𝑟2 sin(𝜙) 𝑑𝑟𝑑𝜙𝑑θ
𝑑

0

𝜋

0

2𝜋

0
.                 (5.3.2-8) 

Now we can integrate ∫ 𝑒− /2(𝑟2)𝑟2𝑑𝑟
𝑑

0
= 23/2 ∫ 𝑒−𝑟2𝑑/√2

0
𝑟2𝑑𝑟 by parts to get: 

√
𝜋

2
erf (

𝑑

√2
) − 𝑑 𝑒−𝑑2/2.                     (5.3.2-9) 

(For integration of the integral ∫ 𝑒−𝑟2𝑑/√2

0
𝑟2𝑑𝑟 by parts, represent it as ∫ 𝑢𝑑𝑣

𝑏

𝑎
, where 𝑢 = 𝑟, 𝑑𝑣 =

𝑒−𝑟2
𝑟𝑑𝑟, 𝑎 = 0, 𝑏 = 𝑑/√2.) 

Thus, 𝑝 =
 

(2𝜋)3/2 (√
𝜋

2
erf(𝑑/√2) − 𝑑 𝑒−

𝑑2

2 )∫ ∫ sin(𝜙) 𝑑𝜙𝑑𝜃
𝜋

0

2𝜋

0
, or 

𝑝 = erf(𝑑/√2) − √2/𝜋 𝑑 (𝑒−𝑑2/2).                (5.3.2-10) 

Thus, given the desired value 𝑑, the corresponding 𝑝 equals the direct evaluation of           (5.3.2-11) 
Equation (5.3.2-10); or given the desired value 𝑝, the corresponding 𝑑 equals the results of an iterative 
search for 𝑑 such that Equation (5.3.2-10) is satisfied to within a small tolerance dictated by desired 
precision. 
 

5.3.3 Additional properties of the Error Ellipsoid 

 
Referring back to the general equation for the error ellipsoid, Equation (5.3-2), the surface of the error 

ellipsoid corresponds to a constant probability density equal to (2𝜋)−𝑛/2det (𝐶𝑋)− /2𝑒− /2(𝑑2).  In 

addition, the 3d error ellipsoid requires the least volume over all surfaces to capture the specified level 

of probability it encloses.  Similarly, the 2D error ellipse requires the least area over all curves, i.e., it is 

the “optimal shape”, given that the probability distribution is Gaussian.  This can be proven using the 

Calculus of variations – see reference [29]. 

Regarding the volume (area) of an error ellipsoid defined by 𝜖𝑋𝑇𝐶𝑋
− 𝜖𝑋 = 𝑑2: 

𝑛 = 2  𝐴𝑟𝑒𝑎 = 𝑠𝑞𝑟𝑡(det(𝐶𝑋))𝜋𝑑2   (2D ellipse)                            (5.3.3-1) 

𝑛 = 3   𝑉𝑜𝑙𝑢𝑚𝑒 = 𝑠𝑞𝑟𝑡(det(𝐶𝑋))(4/3)𝜋𝑑3  (3D ellipsoid)               (5.3.3-2) 

Note that det(𝐶𝑋) equals the product of the eigenvalues of the error covariance matrix 𝐶𝑋. 

Finally, the error ellipsoid can correspond to either absolute error, as represented by the 3x3 error 

covariance matrix 𝐶𝑋, or relative error, as represented by the 3x3 relative error covariance matrix 𝑟𝑒𝑙𝐶𝑋 

(see Section 5.5.4).  Once the appropriate error covariance matrix is available, all procedures and 

interpretations involving the error ellipsoid are the same, other than whether absolute or a relative 

error is represented. 
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5.3.4 Rendering the Error Ellipsoid 

The error ellipsoid is based on Equation (5.3-2) and relative to an original Cartesian coordinate system 

(x,y,z).  However the same error ellipsoid can be represented in a more straightforward manner in an 

eigenvector aligned Cartesian coordinate system (x’,y’,z’), where the eigenvectors and their eigenvalues 

correspond to the original error covariance matrix 𝐶𝑋.  This is illustrated as follows for an error ellipse 

(n=2) for convenience, although easily extendable to an error ellipsoid (n=3) in a straightforward 

manner.   

Because we assume a valid 2𝑥2 error covariance matrix 𝐶𝑋, i.e., symmetric and positive definite, there 

exists a 2𝑥2 unitary matrix Φ that transforms vectors from the (x,y) system to the (x’,y’) system.  The 

matrix rows of Φ consist of the unit eigenvectors of 𝐶𝑋, and Φ𝐶𝑋Φ𝑇 = 𝐷, where 𝐷 is a diagonal 2𝑥2 

matrix with corresponding eigenvalues as the diagonal elements (maximum eigenvalue assumed in the 

x’-direction for specificity).  In addition, since Φ is unitary, Φ𝑇 = Φ− .  Thus: 

𝐷− = (Φ𝐶𝑋Φ𝑇)− = Φ𝑇− 𝐶𝑋
− Φ− = Φ𝐶𝑋

− Φ𝑇.                (5.3.4-1) 

𝜖𝑋𝑇𝐶𝑋
− 𝜖𝑋 = 𝑑2                    (5.3.4-2) 

𝜖𝑋𝑇(Φ𝑇Φ)𝐶𝑋
− (Φ𝑇Φ)ϵ𝑋 = 𝑑2 

(Φϵ𝑋)𝑇(Φ𝐶𝑋
− Φ𝑇)(Φϵ𝑋) = 𝑑2 

𝜖𝑋′𝑇𝐷− ϵX′ = 𝑑2 

𝜖𝑥′2

𝜎𝑒𝑖𝑔𝑚𝑎𝑥
2 +

𝜖𝑦′2

𝜎𝑒𝑖𝑔𝑚𝑖𝑛
2 = 𝑑2. 

This is illustrated in Figure 5.3.4-1.  Note that, as directly implied by Equation (5.3.4-2), the error ellipse 

semi-major and semi-minor axis correspond to 𝑑 multiplied by the square-root of the eigenvalues, i.e., 

𝑑𝜎𝑒𝑖𝑔𝑚𝑎𝑥 and 𝑑𝜎𝑒𝑖𝑔𝑚𝑖𝑛, respectively. 

 
Figure 5.3.4-1: The error ellipse in the eigenvector-aligned coordinate system   
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See Appendix B for pseudo-code (MATLAB) to render a 2D error ellipse and a 3D error ellipsoid in the 

original Cartesian coordinate system.  The approach is to generate the ellipsoid relative to an 

eigenvector-aligned coordinate system, and then rotate to the original coordinate system and render 

(draw).  Inputs consist of the error covariance matrix, an optional mean-value, and either the desired 

probability p or normalized distance d. 

Finally, an error ellipsoid and corresponding error covariance matrix are equivalent: given the desired 

probability level, one can be derived solely from the other.  Specifically, corresponding to a desired 

dimension n and a desired level of probability (and hence, value of d) the error ellipsoid is based solely 

on the nxn error covariance matrix (inverse) in its defining formula (Figure 5.3-2), and although seldom 

performed in practice, the nxn error covariance matrix can also be derived via a graph of the error 

ellipsoid corresponding to dimension n and desired level of probability (and hence, value of d).  This is 

most easily implemented by “reverse engineering” the above ellipsoid rendering procedure, i.e., 

determine the alignment and length of the error ellipsoid’s principal axes (e.g., semi-major and semi-

minor axes), which correspond to the eigenvectors and eigenvalues (scaled by the value d) of the error 

covariance matrix and which completely define it via the corresponding unitary transformation (matrix 

𝜙) described earlier in this subsection. 

 

5.3.5 Comparison of Covariance Matrices 

It is not uncommon in the literature concerning advanced linear algebra, estimation theory, and 

probability/statistics to see the expressions 𝐵 ≥ 𝐴 or 𝐵 > 𝐴 for two error covariance matrices of the 

same dimension.  What does this really mean and why is it so important?   

First, by linear algebra convention, 𝐶 ≥ 0 symbolizes a positive semi-definite matrix 𝐶, and 𝐷 > 0 

symbolizes a positive definite matrix 𝐷.   In addition, the set of all 𝑛𝑥𝑛 positive definite matrices is a 

proper subset of the set of all 𝑛𝑥𝑛 positive semi-definite matrices.   If the matrix 𝐷 is also symmetric, it 

can be considered a valid error covariance matrix, per subsection 5.2. 

In the following equations (5.3.5-1) – (5.3.5-3), we assume that both 𝐴 and 𝐵 are valid 𝑛𝑥𝑛 error 

covariance matrices: 

Definitions for 𝑩 ≥ 𝑨 and 𝑩 > 𝑨:                 (5.3.5-1)  

𝐵 ≥ 𝐴 is defined as 𝐵 − 𝐴 ≥ 0, i.e., (𝐵 − 𝐴) is a positive semi-definite matrix;      

𝐵 > 𝐴 is defined as 𝐵 − 𝐴 > 0, i.e., (𝐵 − 𝐴) is a positive definite matrix.  

What are the various implications and properties corresponding to these definitions?   

  



NGA.SIG.0026.03_1.0_ACCPRED 
 

 
39 

Assume that  𝑩 > 𝑨:                      (5.3.5-2) 

(1) 𝑡𝑟𝑎𝑐𝑒(𝐴) < 𝑡𝑟𝑎𝑐𝑒(𝐵) and 𝐴(𝑖, 𝑖) < 𝐵(𝑖, 𝑖) for all 𝑖 = 1, . . , 𝑛.       

Thus, the variance for each error component 𝑖 is smaller in 𝐴 than in 𝐵.  Also, if 𝐴 and 𝐵 are the solution 

error covariances for the same but arbitrary state vector 𝑋 from Estimators a and b, Estimator a is a 

“better” estimator than Estimator b.  In fact, if 𝐵 coprresponds to any other estimator, and if 𝐴 < 𝐵 (or 

𝐴 ≤ 𝐵), Estimator a is a minimum mean-square estimator by definition. 

proof of (1) 

i)  (𝐵 − 𝐴) > 0 by assumption 

ii)  𝑌𝑇(𝐵 − 𝐴)𝑌 > 0 for all 𝑛𝑥1 𝑌 not equal to zero, by definition of a positive definite matrix 

iii) Let 𝑌′𝑇 = [0. . 1 . .0] have an entry of 1 in the 𝑖 𝑡ℎ component 

iv) 𝑌′𝑇(𝐵 − 𝐴)𝑌 = 𝐵(𝑖, 𝑖) − 𝐴(𝑖, 𝑖) > 0 via (ii) 

v) therefore, 𝜎𝑖
2 of matrix 𝐵 >  𝜎𝑖

2 of matrix 𝐴 

vi) therefore, 𝑡𝑟𝑎𝑐𝑒(𝐵) > 𝑡𝑟𝑎𝑐𝑒(𝐴). 

(If 𝑩 ≥ 𝑨, 𝑡𝑟𝑎𝑐𝑒(𝐴) ≤ 𝑡𝑟𝑎𝑐𝑒(𝐵) and 𝐴(𝑖, 𝑖) ≤ 𝐵(𝑖, 𝑖) for all 𝑖 = 1, . . , 𝑛; proof - simply substitute all > 

signs with their ≥ sign counterpart in the proof of (1) above.) 

(2) 𝐴 has a “better” error ellipsoid than 𝐵.   

For example, the left portion of Figure 5.3.5-1 is always applicable, and the right portion is never 

applicable, where the error ellipsoids 𝜖𝑋𝑇𝐴− 𝜖𝑋 = 𝑑2 and 𝜖𝑋𝑇𝐵− 𝜖𝑋 = 𝑑2 are plotted (𝑛 = 2, i.e., an 

error ellipse for this example).  This is intuitive: 𝐵 > 𝐴 implies that the error ellipsoid for 𝐴 is always 

better than the error ellipsoid for 𝐵, regardless where along the ellipsoidal boundary.   
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Figure 5.3.5-1: The error ellipsoid corresponding to error covariance matrix A is better than that 

corresponding to error covariance matrix B. 

(If 𝑩 ≥ 𝑨, 𝐴 “almost always” has a better ellipsoid than 𝐵, since strictly speaking, the two ellipses may 

share a common boundary at two points (𝑛 = 2), and two ellipsoids may share a common boundary 

along an ellipse (𝑛 = 3).  Thus, the left side of Figure 5.3.5-1 is still applicable, although slightly modified, 

and the right side of the figure remains applicable.  This also assumes that 𝐵 ≥ 𝐴 in the “strict sense”, 

i.e., 𝐵 ≠ 𝐴  and 𝐵 > 𝐴  is not true.) 

proof of (2) 

i)  𝐵 > 𝐴 implies that 𝐴− > 𝐵−  

ii)  𝜖𝑋𝑇(𝐴− − 𝐵− )𝜖𝑋 > 0 or 𝜖𝑋𝑇𝐴− 𝜖𝑋 > 𝜖𝑋𝑇𝐵− 𝜖𝑋  for all 𝜖𝑋 not equal to zero 

iii) If 𝜖𝑋′𝑇𝐴− 𝜖𝑋′ = 𝑑2 at 𝜖𝑋 = 𝜖𝑋′, then 𝜖𝑋′𝑇𝐵𝜖𝑋′ < 𝑑2, consistent with the left side of Figure 5.3.5-1. 

iv) Suppose there exists 𝜖𝑋 = 𝜖𝑋′ such that 𝜖𝑋′𝑇𝐵− 𝜖𝑋′ > 𝜖𝑋′𝑇𝐴− 𝜖𝑋′ corresponding to the right side 

of figure - this contradicts (ii). 

(If 𝑩 ≥ 𝑨: simply substitute all > and < signs with their ≥ and ≤ sign counterparts, respectively, in steps 

i-iii in the proof of (2) above.) 
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No longer assume that 𝑩 > 𝑨:                    (5.3.5-3) 

(1) 𝑡𝑟𝑎𝑐𝑒(𝐴) < 𝑡𝑟𝑎𝑐𝑒(𝐵) and 𝐴(𝑖, 𝑖) < 𝐵(𝑖, 𝑖) for all 𝑖 = 1, . . , 𝑛, does not imply 𝐵 > 𝐴. 

proof of 1 by demonstration 

i) Let 𝑛 = 2 and 𝐴 = 𝐼2𝑥2.  Let 𝐵(1,1) = 𝐵(2,2) = 1.1 and 𝐵(1,2) = 𝐵(2,1) = 0.9.  Thus, 𝑡𝑟𝑎𝑐𝑒(𝐴) <

𝑡𝑟𝑎𝑐𝑒(𝐵) and 𝐴(𝑖, 𝑖) < 𝐵(𝑖, 𝑖) for 𝑖 = 1, . . ,2. 

ii) At 𝑌′𝑇 = [1 −1], 𝑌′𝑇𝐴𝑌′ = 2 and  𝑌′𝑇𝐵𝑌′ = 0.4, thus  

𝑌′𝑇(𝐵 − 𝐴)𝑌′ < 0, and therefore it is not true that 𝐵 > 𝐴, i.e., it is not true that 𝑌𝑇(𝐵 − 𝐴)𝑌 > 0 for all 

𝑌 ≠ 0. 

iii) At 𝜖𝑋′𝑇 = [1 0],  𝜖𝑋′𝑇𝐴− 𝜖𝑋′ =1, and at 𝜖𝑋′′𝑇 = [1/√2.75 0] ≅ [0.6 0], 𝜖𝑋′′𝑇𝐵− 𝜖𝑋′′ = 1; 

therefore the error ellipse for 𝐴 is not better than the error ellipse for 𝐵 over the entire boundary of the 

former. 

We can also illustrate this by showing the corresponding standard error ellipses (𝑑 = 1) in Figure 5.3.5-2 

below.  The error ellipse for 𝐴 is not better than the ellipse for 𝐵; in fact, the error ellipse for 𝐵 contains 

less area than the error ellipse for 𝐴 (1.99 versus 3.14 meters-squared). 

 

Figure : 5.3.5-2: The error ellipse for A (red) is not better than for B (blue) everywhere 

(No longer assume that 𝑩 ≥ 𝑨: 𝑡𝑟𝑎𝑐𝑒(𝐴) ≤ 𝑡𝑟𝑎𝑐𝑒(𝐵) and 𝐴(𝑖, 𝑖) ≤ 𝐵(𝑖, 𝑖) for all 𝑖 = 1, . . , 𝑛, does not 

imply 𝐵 ≥ 𝐴; the proof of (1) above is easily modified; the above figure remains applicable.)   
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5.3.6 Error ellipsoids: intersection and union 

Sometimes we are interested in the “intersection” and “union” of two valid error covariance matrices 𝐴 

and 𝐵 and their corresponding error ellipsoids.  The two matrices have the same 𝑛𝑥𝑛 dimension, where 

1 ≤ 𝑛 ≤ 3. The appropriate definitions follow: 

𝐶𝐴∩𝐵 ≡ 2(𝐴− + 𝐵− )− , equal to the harmonic mean of matrices 𝐴 and 𝐵.             (5.3.6-1) 

𝐶𝐴∪𝐵 ≡ (𝐴 + 𝐵) − 𝐶𝐴∩𝐵                   (5.3.6-2) 

We term the 𝑛𝑥𝑛 error covariance matrix 𝐶𝐴∩𝐵 the “intersection error covariance”; similarly, we term 

the 𝑛𝑥𝑛 error covariance matrix 𝐶𝐴∪𝐵 the “union error covariance”.  These terms follow from the 

properties of their corresponding error ellipsoids as illustrated in the following example (𝑛 = 2): 

Let error 𝜖𝑋𝑎 = [𝜖𝑥𝑎 𝜖𝑦𝑎]𝑇 with a mean-value of zero and covariance matrix 𝐴 =  
8 5
5 6

 ; 

Let error 𝜖𝑋𝑏 = [𝜖𝑥𝑏 𝜖𝑦𝑏]𝑇 with a mean-value of zero and covariance matrix 𝐵 =  
1 0
0 20

 . 

Figure 5.3.6-1 presents the corresponding 50% error ellipses for error covariance matrices 𝐴 (blue), 𝐵 

(blue), (𝐴 + 𝐵) (thick blue), 𝐶𝐴∩𝐵 (red dashes), and 𝐶𝐴∪𝐵 (red).  (The probability level for the various 

ellipses is arbitrary, but must be common.) 

 
Figure 5.3.6-1: Various error ellipses corresponding to covariance matrices 𝐴 and 𝐵 (Example 1) 

Note that the error ellipse corresponding to the intersection error covariance matrix 𝐶𝐴∩𝐵 (red dashes) 

is an ellipsoidal approximation of the intersection of the interiors of the error ellipses corresponding to 

the error covariance matrices 𝐴 (blue) and 𝐵 (blue).   The error ellipse corresponding to the union error 

covariance matrix 𝐶𝐴∪𝐵 (red) is an ellipsoidal approximation of the union of the interiors of the error 

ellipses corresponding to the error covariance matrices 𝐴 (blue) and 𝐵 (blue).  It does not “double 
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count” their intersection; hence, is smaller than the error ellipse for (𝐴 + 𝐵), i.e., in terms of covariance 

matrixes per se, 𝐶𝐴∪𝐵 < (𝐴 + 𝐵). 

There are various applications where the error covariance matrices 𝐶𝐴∩𝐵 and 𝐶𝐴∪𝐵 and their error 

ellipsoids are of interest.  One such general application corresponds to a 2d error that corresponds to 

either 𝜖𝑋𝑎 or 𝜖𝑋𝑏.  It may be unknown which of these errors is applicable for a particular application, or 

it may be that a common statistical error model is to be used for both for practicality.  Either way, the 

error is defined as “𝜖𝑋𝑎 or 𝜖𝑋𝑏”, not “𝜖𝑋𝑎 and (+) 𝜖𝑋𝑏”.  The error covariance matrix (𝐴 + 𝐵) 

corresponds to the latter and is too conservative (pessimistic) for the former.  The error covariance 

matrix 𝐶𝐴∪𝐵 is “tailored” to the former.  It is virtually the smallest valid error covariance matrix (or 

equivalent error ellipsoid) that approximately contains both 𝐴 and 𝐵, i.e.,  𝐴 ≈≤ 𝐶𝐴∪𝐵 and 𝐵 ≈≤ 𝐶𝐴∪𝐵.  

Of course, 𝐶𝐴∪𝐵 is an approximate error covariance matrix relative to both 𝜖𝑋𝑎 and 𝜖𝑋𝑏 when they are 

considered individually – a conservative approximation in general, but not too conservative. 

This is further illustrated with an additional example similar to the first example except for modification 

of the error covariance matrix 𝐴: 

Let error 𝜖𝑋𝑎 = [𝜖𝑥𝑎 𝜖𝑦𝑎]𝑇 with a mean-value of zero and covariance matrix 𝐴 =  
1 0
0 12

 ; 

Let error 𝜖𝑋𝑏 = [𝜖𝑥𝑏 𝜖𝑦𝑏]𝑇 with a mean-value of zero and covariance matrix 𝐵 =  
1 0
0 20

 . 

Figure 5.3.6-2 presents the corresponding 50% error ellipses for error covariance matrices 𝐴 (blue), 𝐵 

(blue), (𝐴 + 𝐵) (thick blue), 𝐶𝐴∩𝐵 (red dashes), and 𝐶𝐴∪𝐵 (red).   

 
Figure 5.3.6-2: Various error ellipses corresponding to covariance matrices 𝐴 and 𝐵 (Example 2) 

Note the even larger disparity between the error ellipses for (𝐴 + 𝐵) (thick blue) and for 𝐶𝐴∪𝐵 (red) in 

this example.  Further note that the error ellipse for 𝐶𝐴∪𝐵 (red) is somewhat closer to the error ellipse 
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for 𝐵 (larger blue) than the error ellipse for 𝐴 (smaller blue).  This is appropriate for a reasonable 

approximation 𝐶𝐴∪𝐵, as the error ellipse for 𝐵 is larger than the error ellipse for 𝐴; i.e., regarding errors, 

it is better to be a little more pessimistic than optimistic. 

The following proves that the error covariance matrices 𝐶𝐴∩𝐵 and 𝐶𝐴∪𝐵 are valid (positive definite) 

covariance matrices in general: 

𝐶𝐴∩𝐵 is positive definite because the inverse of a positive definite matrix is positive definite itself, and 

the positive sum of two positive definite matrices is positive definite (see subsections 5.2.1 and 5.2.2).  

The proof for 𝐶𝐴∪𝐵 is outlined as follows: 

(𝐴− + 𝐵− ) > 𝐴−  (see subsection 5.3.5 for matrix > definition)               (5.3.6-3) 

(𝐴− + 𝐵− )− < 𝐴 

2(𝐴− + 𝐵− )− < (𝐴 + 𝐵) 

(𝐴 + 𝐵) − 2(𝐴− + 𝐵− )− = (𝐴 + 𝐵) − 𝐶𝐴∩𝐵 = 𝐶𝐴∪𝐵 > 0. 

(In addition, all the above matrices are symmetric as well, also required for an error covariance matrix.) 

Finally, Equations (5.3.6-1) and (5.3.6-2) can be extended to more than two covariance matrices, if need 

be.  For example, assume covariance matrices 𝐴, 𝐵, and 𝐸 are relevant.  Compute: 

𝐶𝐴∪𝐵 ≡ 𝐷, followed by 𝐶𝐷∪𝐸,or symbolically 𝐶((𝐴∪𝐵)∪𝐸). 

However, it must be pointed out that this approach is not associative, e.g., 𝐶((𝐴∪𝐵)∪𝐸) ≠ 𝐶((𝐴∪(𝐵∪𝐸)) in 

general, but typically 𝐶((𝐴∪𝐵)∪𝐸) ≅ 𝐶((𝐴∪(𝐵∪𝐸)). 

 

5.4 Predictive Scalar Accuracy Metrics: Linear Error, Circular Error, and 

Spherical Error 
This section of the document assumes that the underlying probability distribution of errors is Gaussian 

in order to assign probabilities to the predictive scalar accuracy metrics. 

Scalar accuracy metrics are used to summarize accuracy and predicted accuracy, and more specifically, 

regarding the latter, approximate various portions of the corresponding 3d (3x3) error covariance 

matrix: Linear Error (LE) for z, Circular Error (CE) for x-y, and Spherical Error (SE) for x-y-z.  They also 

correspond to a specific level of probability.  In this document, if not specified explicitly, such as CE_50 

for 50%, they are assumed to be at the 90% or 𝑝 = 0.9 probability level.   

The derivation and practical calculations of these scalar metrics as predictive statistics are presented in 

this section and assume a Gaussian distribution of errors.  Errors are also assumed to have a mean-value 

of zero unless specifically stated otherwise.  If non-zero, the underlying data could simply be corrected 
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by the mean-value, with a resultant mean-value of error set equal to zero.   (Note that a non-zero mean-

value is sometimes termed a “bias”.) 

CE corresponds to horizontal error and is computed from the upper left 2  2 portion of the full 3  3 

error covariance matrix CX.  CE corresponds to the radius of a circle, centered at the origin, such that 

there is a 90% probability that the horizontal error resides within the circle, or equivalently, if the circle 

is centered at a target solution, there is a 90% probability that the true target horizontal location resides 

within the circle.  LE corresponds to a vertical error and is computed from the lower right 1  1 portion 

of the full 3  3 error covariance matrix CX.  There is a 90% probability that the vertical error resides 

within +/– the LE value.  (Note that we have assumed that the underlying x-y-z coordinate system is a 

local tangent plane system, i.e., x and y are horizontal components and z the vertical component.) 

 

CE and LE can also be considered approximations to 2D and 1D (90%) error ellipsoids, respectively.  Note 

that a 2D error ellipsoid is an ellipse, and a 1D error ellipsoid is a line.  See Section 5.3.3 for a discussion 

on error ellipsoids, which are equivalent to the error covariance matrix and provide a visual display of 

the expected magnitude of errors, their directivity, and the interrelationships of their components.   

 

CE and LE are easy to understand, visualize, and are in common use for military applications.  The scalar 

accuracy metric SE, which corresponds to the radius of a 3D sphere, is also used to approximate the 

corresponding full 3x3 error covariance matrix, or equivalently, the 3D (90%) error ellipsoid.  

Alternatively, the 3D error ellipsoid can be approximated by a CE-LE error cylinder, as described below; 

however, this requires two scalar metrics (CE and LE) as opposed to just one for SE. 
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Figures 5.4-1 and 5.4-2 presents examples of CE and a CE-LE cylinder, respectively, that approximate the 

upper left 2x2 and full 3x3 of the following error covariance matrix:  

𝐶𝑋 = [

𝜎𝑥
2 𝜌

𝑥𝑦
𝜎𝑥𝜎𝑦 𝜌

𝑥𝑧
𝜎𝑥𝜎𝑧

. 𝜎𝑦
2 𝜌

𝑦𝑧
𝜎𝑦𝜎𝑧

. . 𝜎𝑧
2

] =  
102 0.75 ∙ 10 ∙ 12 0.95 ∙ 10 ∙ 9

. 122 0.8 ∙ 12 ∙ 9

. . 92

 .    (5.4-1) 

 

 

Figure 5.4-1: CE Circle vs Ellipse 

 

Figure 5.4-2: CE-LE Cylinder vs Ellipsoid  

(note the change in x-axis orientation relative to the previous figure) 

The top and bottom of the CE-LE cylinder correspond to a circle with radius CE meters.  The wall of the 

cylinder is twice the length LE meters.  

The amount of probability enclosed by the CE-LE cylinder is between 81-90%, depending how the 

vertical errors are correlated with the horizontal errors – if zero correlation, the enclosed probability is 

81%, i.e., (0.902), if highly (positive or negative) correlated, the enclosed probability approaches 90%.   
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(In order to derive the actual probability enclosed by the cylinder when vertical errors are correlated 

with horizontal errors, i.e., 𝐶𝑋(1,3) ≠ 0 and/or 𝐶𝑋(2,3) ≠ 0, the multi-variate Gaussian probability 

density function is integrated over the three-dimensional region defined by the CE-LE cylinder.  That is, 

Equation (5.1.3-4) is implemented with region 𝑅 defined as the specific CE-LE cylinder of interest.) 

Of course, LE (alone) approximates the lower right 1x1 of the error covariance matrix specified in 

Equation (5.4-1).  In fact, as opposed to CE and SE, its approximation is exact, since both LE and the 1x1 

error covariance matrix one can be derived from the other, given that the error distribution is assumed 

Gaussian and that the level of probability specified. 

The 3D error ellipsoid can also be approximated directly via SE, the radius of the SE spheroid that 

encloses 90% of the probability.  This is depicted in Figure 5.4-3 for the same 3x3 error covariance matrix 

detailed earlier.  Note that the spheroid requires significantly more volume than does the 3D error 

ellipsoid to enclose the specified level of probability.  (And, of course, as discussed in Section 5.3.3, the 

3D error ellipsoid requires the least volume over all shapes.)  This is to be expected: SE requires only one 

number, whereas the 3D error ellipsoid (error covariance matrix) requires 6 unique numbers and 

contains much more information. 

 

Figure 5.4-3: SE Spheroid vs. Ellipsoid 

A desirable feature of scalar accuracy metrics is that they provide a natural representation of accuracy 

and a convenient summary of predicted accuracy.  In fact, by definition, they have a specified probability 

of error associated with them.  They are also used for the categorization of ordinance characteristics.  

However, scalar accuracy metrics do have limitations as documented in TGD 1 (Overview and 

Methodologies); thus, predictive scalar accuracy metrics should supplement but not replace the 

corresponding error covariance matrix. 
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The following subsections proceed to detail the computation of the predictive scalar accuracy metrics 

LE, CE, and SE.  The error covariance matrix 𝐶𝑋 is assumed to correspond to the relevant portion of the 

original 3x3 error covariance matrix 𝐶𝑋, i.e., the lower right 1x1 for LE, the upper left 2x2 for CE, and the 

full 3x3 for SE.   

Sections 5.4.1, 5.4.2, and 5.4.3 correspond to LE, CE, and SE, respectively.  Each of these sections 

includes appropriate derivations, followed by a subsection with the corresponding calculation algorithm.  

Derivations include those for specific levels of probability: 𝑝 = 0.5, 0.9, 0.95, 0.99, 𝑎𝑛𝑑 0.999, or in 

terms of percent: 𝑋𝑋 = 50, 90, 95, 99, 𝑎𝑛𝑑 99.9; for example, CE_95 corresponding to XX=95. 

Note that these algorithms provide for high-fidelity approximations to their theoretical, exact calculation 

counterparts.  There are other numerous approximations available, such as the “rms approximation” 

CE_90=2.15 rms(sigma_x,sigma_y) and the “average approximation” CE_90=2.15 avg(sigma_x,sigma_y), 

that are even simpler, but low fidelity.  They are not documented further, as the high-fidelity 

“standards” are easily implemented in today’s computer environment with easy to use programming 

languages (e.g., MATLAB).  However, Figure 5.4-4 does present a comparison of various CE_90 

computation methods for a specific error ellipse (black): the high-fidelity baseline method (blue), the 

rms approximation (red), and the average approximation (green).  The two low-fidelity approximations 

for CE_90 are approximately 10% too small, i.e., optimistic.  As documented later in this chapter, the 

baseline CE_90 computation method has a computation (approximation) error on the order of only 0.01 

% of the correct CE_90 value.  Finally, note that the square root of the largest eigenvalue and the square 

root of the smallest eigenvalue of the underlying 2x2 error covariance matrix are the semi-major and 

semi-minor axis of the ellipse in Figure 5.4-4.  The ratio of the semi-minor to semi-major axis is 

approximately 𝑟 = 0.1 for this example. 

 
Figure 5.4-4: Comparison of CE_90 computation methods: high-fidelity baseline (blue),  

“rms approx” (red), “average approx” (green) 
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As mentioned earlier, the mean-value of predictive errors is almost always assumed zero.  However, the 

following sections also provide a solution when the mean-value is not assumed zero.  However, by 

definition, the corresponding error ellipsoids are still centered at the origin, not the mean-value of error.  

Thus, for example, given a specific error covariance matrix 𝐶𝑋, there is an algorithm to compute CE_50 

assuming a mean-value �̅� = 0.  If, on the other hand, the specific error covariance is about a non-zero 

mean-value that is also specified, there is an algorithm to compute CE_50 as well, let us call this 

“CE_50_mv” here for specificity.  (Both algorithms are presented later in this section.) 

Note that CE_50_mv is the radius of a circle about the origin, not the radius of a circle about the mean-

value (location), that encloses 50% probability.  Thus, CE_50_mv does not simply equal 

CE_50_mv_approx = |�̅�|+CE_50, which encloses significantly more than 50% probability, as illustrated in 

Figure 5.4-5: 

 

Figure 5.4-5: Accounting for a non-zero mean value (mv) during the computation of CE_50: the correct 

way “CE_50_mv” (red) versus the low-fidelity approximation “CE_50_mv_approx” (blue) 

Finally, a few words regarding notation close out this introduction to scalar accuracy metrics:  CE_XX is 

also sometimes written as CEXX.  In addition, CE_50 is sometimes referred to as “circular error 

probable” or “CEP”.   Similar comments are applicable to LE and SE.   

In the remainder of Section 5.4 of this document, the explicit error notation “𝜖” is dropped for 

convenience. 
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5.4.1 Linear Error (LE) 

The following analytic formulation for LE at the XX % probability level is a straightforward application of 
the Gaussian probability density function and its properties to the definition of LE provided in Section 
5.4. 
 
LE_XX is defined as that line length L such that: 
 

𝑝 =
 

(2𝜋)1/2𝜎𝑧
∫ 𝑒− /2((𝑧−�̅�)2/𝜎𝑧

2)  𝑑𝑧,                    (5.4.1-1) 

 

integrated over the region √𝑧2 ≤ 𝐿, and where probability 𝑝 = 𝑋𝑋/100, 1d error 𝜖𝑋 = 𝜖𝑧 is defined as 
𝑧 for notational convenience, with mean-value 𝜖𝑋̅̅̅̅  defined as 𝑧̅, and 1 × 1 error covariance matrix 𝐶𝑋 
about the mean defined as 𝜎𝑧

2.  Note that if the mean-value is not zero, the length 𝐿 is still relative to 
the origin per the standard definition of LE_XX. 
 

If we assume that the mean-value of error is zero, and change variables such that 𝑧/(𝜎𝑧√2) → 𝑧∗, 
Equation (5.4.1-1) can be rewritten as: 
 

𝑝 =
2𝜎𝑧√2

(2𝜋)1/2𝜎𝑧
∫ 𝑒−𝑧∗2  𝑑𝑧∗𝐿∗

0
 = 

2

(𝜋)1/2 ∫ 𝑒−𝑧∗2  𝑑𝑧∗ ≡
𝐿∗

0
erf (𝑧 ∗),                (5.4.1-2) 

 

where 𝐿∗ = 𝐿/(𝜎𝑧√2).   
 
Thus, since erf (Error Function) is a well-tabulated function and its inverse available via MATLAB and 
other programming languages, we have by definition, erf 𝑖𝑛𝑣(𝑝) = erf 𝑖𝑛𝑣(𝑋𝑋/100) = 𝐿∗; thus, and 
accounting for the change of variables: 
 

 𝐿𝐸 𝑋𝑋 = 𝜎𝑧√2 × 𝑒𝑟𝑓𝑖𝑛𝑣(
𝑋𝑋

 00
)                    (5.4.1-3) 

 
And specifically: 
 
𝐿𝐸 𝑋𝑋 = 𝐿(𝑝)𝜎𝑧,                     (5.4.1-4) 
 
where 𝑝 = 𝑋𝑋/100 and the multiplier L(p) is listed in Table 5.4.1-1: 
 

Table 5.4.1-1: Linear Error (LE) multiplier L(p) versus probability level p 
 

 
      
The light blue entries are the standard probability levels of interest.  The violet entries are others of 
general interest.  For example, p=0.9973 is the “three-sigma” level of probability.  If the desired 
probability level is different than any of the above, simply evaluate Equation (5.4.1-3) using the desired 
value for XX.  If the mean-value for error is not equal to zero, solve Equation (5.4.1-1) directly using 
iteration and numerical integration.    
 

p=0.5 p=0.6827 p=0.90 p=0.95 p=9545 p=0.99 p=0.9973 p=0.999

L(p) 0.6745 1.0000 1.6499 1.9600 2.0000 2.5758 3.0000 3.2905

Probabilities



NGA.SIG.0026.03_1.0_ACCPRED 
 

 
51 

5.4.1.1 Algorithm for Computing LE_XX 

The following are the priority-ordered methods/equations for the computation pf LE_XX: 

(1) Baseline table look-up (mean-value zero, at specific values of p=0.5, 0.9. 0.95, 0.99, and 0.999), see 

Equation (5.4.1-4). 

(2) Erf (inverse) evaluation (mean-value zero, arbitrary probability level), see Equation (5.4.1-3). 

(3) Integral Equation (arbitrary mean-value and probability level), see Equation (5.4.1-1).   

Pseudo-code (MATLAB) for Equation (5.4.1-3) and Equation (5.4.1-1) are presented in Appendix C.   

5.4.1.2 Examples of LE_XX computation 

Examples are as follows: 

(1) Assume a desired probability level of 90%, a mean error of zero, and 𝐶𝑋 ≡ 𝜎𝑧
2 = [9] meters-squared.  

Thus, baseline table interpolation is applicable and the first-ordered choice: 

𝐿𝐸 90 = 𝐿 × 𝜎𝑧 = 1.6499 × 3 = 4.95 meters. 

(2) Assume a desired probability level of 𝑝 = 0.70 (XX=70), a mean error of zero, and 𝐶𝑋 ≡ 𝜎𝑧
2 = [9] 

meters-squared.  Thus, erf (inverse) evaluation is applicable: 

𝐿𝐸 70 = 3.1092 meters.  

(3) Assume a desired probability level of 90%, a mean predictive error equal to �̅�𝑇 ≡ 𝑧̅ = [−2], and 

𝐶𝑋 ≡ 𝜎𝑧
2 = [9] meters-squared.  Thus, the Integral Equation is applicable:  

𝐿𝐸 90 = 5.976  meters. 

The solution corresponding to the first and second examples were computed virtually instantaneously, 

while the solution corresponding to the third example took on the order of 0.02 seconds using non-

optimized MATLAB code on a notebook computer.  The calculation error was negligible for all. 

5.4.2 Circular Error (CE) 

The following analytic formulation for CE at the XX % probability level is a straightforward application of 
the Gaussian (multi-variate) probability density function and its properties to the definition of CE 
provided in Section 5.4. 
 
CE_XX is defined as that circular radius 𝑅 such that: 
 

𝑝 =
 

(2π))det (𝐶𝑋)1/2 ∬𝑒− /2((𝑋−�̅�)𝑇𝐶𝑋
−1(𝑋−�̅�)  𝑑𝑥𝑑𝑦,                  (5.4.2-1) 

 

integrated over the region √𝑥2 + 𝑦2 ≤ 𝑅, and where probability 𝑝 = 𝑋𝑋/100, 2d error 휀𝑋𝑇 =
[𝜖𝑥 𝜖𝑦] is defined as 𝑋𝑇 = [𝑥 𝑦] for notational convenience, with mean-value 𝜖𝑋̅̅̅̅  defined as �̅�𝑇 =
[�̅� �̅�], and 2 × 2 error covariance matrix about the mean defined as 𝐶𝑋.  Note that if the mean-value is 
not zero, the radius 𝑅 is still relative to the origin [0 0]𝑇, per the standard definition of CE_XX. 
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The above integral relationship can be simplified by assuming an eigenvector aligned x-y Cartesian 
coordinate system.  The latter takes advantage of the positive-definite and symmetric properties of the 
error covariance matrix.  In particular, there exists a Cartesian coordinate system aligned with the error 
covariance matrix eigenvectors such that the error covariance matrix when expressed relative to this 
system is a diagonal matrix with the eigenvalues down the diagonal.  There also exists a transformation 
matrix Φ with (unit) eigenvectors along the rows which transforms vectors in the original x-y coordinate 
system to corresponding vectors in the eigenvector aligned system.   Thus, and taking advantage of 
circular symmetry (the radius 𝑅 applies to either the original or eigenvector-aligned coordinate system), 
we have the following: 
 

Assume that Φ�̅� → �̅�,  Φ𝐶𝑋Φ𝑇 → 𝐶𝑋 = [
𝜎𝑚𝑎𝑥

2 0

0 𝜎𝑚𝑖𝑛
2 ], where the diagonals are the maximum and 

minimum eigenvalues, with 𝜎𝑚𝑎𝑥
2  assumed associated with the x-axis of the eigenvector aligned 

Cartesian coordinate system for convenience of notation.  Equation (5.4.2-1) becomes the equivalent: 
 

𝑝 =
 

(2𝜋)𝜎𝑚𝑎𝑥𝜎𝑚𝑖𝑛
∬𝑒

− /2((
𝑥−�̅�

𝜎𝑚𝑎𝑥
)
2
+(

𝑦−�̅�

𝜎𝑚𝑖𝑛
)
2

)
𝑑𝑥𝑑𝑦 ,                 (5.4.2-2) 

 

integrated over the region √𝑥2 + 𝑦2 ≤ 𝑅. 
 
Note that Equation (5.4.2-2) can be further decomposed, if so desired, as follows: 
 

𝑝 =
 

(2𝜋)𝜎𝑚𝑎𝑥𝜎𝑚𝑖𝑛
∫ 𝑒−(𝑥−�̅�)2/𝜎𝑚𝑎𝑥

2𝑅

−𝑅 ∫ 𝑒−(𝑦−�̅�)2/𝜎𝑚𝑖𝑛
2+√𝑅2−𝑥2

−√𝑅2−𝑥2 𝑑𝑦𝑑𝑥.               (5.4.2-3) 

 
Either of the above Equations (5.4.2-1) or (5.4.2-2) can be solved for iteratively for the radius 𝑅, given 
the desired probability level 𝑝 = 𝑋𝑋/100.  Note that the right side of the corresponding equation for a 
given iteration is solved for numerically for the radius 𝑅, with Equation (5.4.2-2) somewhat more 
numerically stable.  Thus, we have: 
 
𝐶𝐸 𝑋𝑋 = 𝑅.                     (5.4.2-4) 
 
(Note: if the mean-value is zero and the eigenvalues are equal, the integral in Equation (5.4.2-2) can also 

be represented in terms of the random variable 𝑟𝑎𝑑𝑖𝑎𝑙 = √𝑥2 + 𝑦2 and a single integral.  The 
probability distribution of the 𝑟𝑎𝑑𝑖𝑎𝑙 random variable is the Rayleigh distribution.  If the mean-value is 
not equal to zero and the eigenvalues are equal, the probability distribution of the 𝑟𝑎𝑑𝑖𝑎𝑙 random 
variable is the Rice distribution which involves a modified Bessel function of the first kind.  However, 
equal eigenvalues are equivalent to a covariance matrix relative to the original and already eigenvector 
aligned coordinate system that is diagonal with equal variances (standard deviations).  This is a 
significant restriction.  Equation (5.4.2-2) in its current form is more general and requires nothing more 
than a valid covariance matrix.  It is also the foundation for the recommended methods that follow.) 
 
Assuming a mean-value of zero and an additional change of variables from the eigenvector-aligned x-y 
system to a scaled eigenvector aligned x*-y* system corresponding to   𝑥/𝜎𝑚𝑎𝑥 → 𝑥∗ and 𝑦/𝜎𝑚𝑖𝑛 → 𝑦∗, 
Equation (5.4.2-2) can also be written as: 
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𝑝 =
 

(2𝜋)
∬𝑒− /2(𝑥∗2+𝑦∗2)𝑑𝑥∗𝑑𝑦∗                  (5.4.2-5) 

 

integrated over the region √𝑥∗2 + 𝑟2𝑦∗2 ≤ 𝑅/𝜎𝑚𝑎𝑥 , where 𝑟 = 𝜎𝑚𝑖𝑛/𝜎𝑚𝑎𝑥 .   
 
If we also assume that 𝜎𝑚𝑎𝑥 = 1, it follows that the value 𝑅 = 𝑅(𝑝, 𝑟), such that the above integral 
equals the desired level of probability p, is related to CE_XX as follows: 
 
𝐶𝐸 𝑋𝑋 = 𝑅(𝑝, 𝑟)𝜎𝑚𝑎𝑥,                    (5.4.2-6) 
 
where 𝜎𝑚𝑎𝑥 in Equation (5.4.2-6) is the square root of the actual maximum eigenvalue of 𝐶𝑋, and 𝑟 =
𝜎𝑚𝑖𝑛/𝜎𝑚𝑎𝑥.  
 
Typically, 𝑅(𝑝, 𝑟)  is pre-computed for all combination of values of 𝑟 = 0, 0.05, 0.1, . . 0.95,1.0,  
i.e., 21 values or table entries, and then interpolated appropriately. 
 
A given entry for the table is pre-computed by solving Equation (5.4.2-2) for 𝑅, with �̅� set to zero, and 

𝐶𝑋 = [
𝜎𝑚𝑎𝑥

2 0

0 𝜎𝑚𝑖𝑛
2 ] set to  

1 0
0 𝑟2 .  An exception corresponds to values of 𝑟 = 0, where the 

appropriate table value corresponds to limit arguments.  Specifically, if 𝑟 = 0, the CE_XX table entry 
corresponds to LE_XX, i.e., the expected magnitude of error in the second dimension approaches zero or 
is a “non-entity”. 
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The following table presents the pre-computed values of 𝑅(𝑝, 𝑟) for various probability levels.  In 
particular, columns 2-5 correspond to p=0.5, 0.9. 0.95, 0.99, and 0.999, respectively, or alternatively, to 
XX=50, 90, 95, 99, and 99.9 %, respectively.  

 
Table 5.4.2-1: Circular Error (CE) multiplier 𝑅(𝑝, 𝑟) versus probability level p and ratio r: 

 

For an arbitrary error covariance matrix 𝐶𝑋 with corresponding ratio 𝑟  ( 0 < 𝑟 ≤ 1 ) and 𝜎𝑚𝑎𝑥, CE_XX is 

computed as 𝐶𝐸 𝑋𝑋 = 𝑅∗𝜎𝑚𝑎𝑥,  where the normalized radius 𝑅∗ is computed as the linear 

interpolation of 𝑅(𝑋𝑋/100, 𝑟) from the corresponding column of Table 5.4.2-1.   

5.4.2.1 Baseline Computation Method: Table Interpolation 

As detailed above, the baseline interpolation method to compute CE_XX assumes a mean-value of zero 

and fixed probability levels.  It is summarized as an algorithm as follows: 

(1) Compute the eigenvalues of 𝐶𝑋:  𝜎𝑚𝑎𝑥
2 , 𝜎𝑚𝑖𝑛

2 , assumed in descending order            (5.4.2.1-1) 

(2) Compute 𝜎𝑚𝑎𝑥, 𝑟 = 𝜎𝑚𝑖𝑛/𝜎𝑚𝑎𝑥; there is no limit on the value of 𝑟 other than 0 < 𝑟 ≤ 1. 

(3) Based on the desired probability level XX (%) and the computed value 𝑟, perform linear  interpolation 

within the appropriate column of Table 5.4.2-1, i.e., 𝑅(𝑝 = 𝑋𝑋/100, 𝑟) of Section 5.4.2 for a normalized 

radius value 𝑅∗ 

(4) 𝐶𝐸𝑋𝑋 = 𝑅∗ 𝜎𝑚𝑎𝑥. 

p=0.5 p=0.9 p=0.95 p=0.99 p=0.999

0.00 0.6745 1.6449 1.9600 2.5758 3.2905

0.05 0.6763 1.6456 1.9606 2.5763 3.2910

0.10 0.6820 1.6479 1.9625 2.5778 3.2921

0.15 0.6916 1.6518 1.9658 2.5803 3.2940

0.20 0.7059 1.6573 1.9704 2.5838 3.2967

0.25 0.7254 1.6646 1.9765 2.5884 3.3003

0.30 0.7499 1.6738 1.9842 2.5942 3.3049

0.35 0.7779 1.6852 1.9937 2.6013 3.3104

0.40 0.8079 1.6992 2.0051 2.6099 3.3172

0.45 0.8389 1.7163 2.0190 2.6203 3.3252

0.50 0.8704 1.7371 2.0359 2.6326 3.3346

0.55 0.9021 1.7621 2.0564 2.6474 3.3459

0.60 0.9337 1.7915 2.0813 2.6653 3.3595

0.65 0.9651 1.8251 2.1111 2.6875 3.3759

0.70 0.9962 1.8625 2.1460 2.7151 3.3965

0.75 1.0271 1.9034 2.1858 2.7492 3.4227

0.80 1.0577 1.9472 2.2303 2.7907 3.4570

0.85 1.0880 1.9936 2.2791 2.8401 3.5018

0.90 1.1181 2.0424 2.3318 2.8974 3.5594

0.95 1.1479 2.0932 2.3881 2.9625 3.6310

1.00 1.1774 2.1460 2.4478 3.0349 3.7169

Ratio

r

Probabilities
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5.4.2.2 Alternate Computation Method: Monte Carlo Matrix Square Root 

The following alternate approach to the computation of CE_XX is applicable to arbitrary mean-values 

and arbitrary probability levels, is computationally accurate and reasonably fast:    

(1) Compute 1E6 independent samples of the 2x1 horizontal error: 𝑠𝑖 = �̅� + 𝐶𝑋
 /2

𝑛𝑖 ,                 (5.4.2.2-1) 

 𝑖 = 1, . . ,1𝐸6,  

where �̅� and 𝐶𝑋 are the 2x1 mean and the 2x2 error covariance about the mean relative to the original 

(non-eigenvector aligned) coordinate system, 𝑛𝑖 is a two-element vector with each element the 

realization of an  independent Gaussian or normal  𝑁(0,1) random variable, and where the superscript 

“1/2”  indicates principal matrix square root.  �̅� and 𝑛𝑖 are 2x1 vectors, and 𝐶𝑋
 /2

 is a 2x2 matrix.  Also, 

𝑠𝑖 is a Gaussian distributed random vector with mean �̅� since it is a linear function of the mean-zero 

random vector 𝑛𝑖 and added to �̅�. 

 (2) Order the magnitudes of the error samples 𝑠𝑖 from smallest to largest, and designate 𝑅𝐸𝑋𝑋 the 

XX_th percent largest, and 𝑅𝐸𝑋𝑋
∗  the next largest magnitude. 

(3) CE_XX=(𝑅𝐸𝑋𝑋 + 𝑅𝐸𝑋𝑋
∗ )/2 ). 

Note that the symmetric 𝐶𝑋
 /2

 is computed once prior to generating the independent samples, and the 

samples 𝐶𝑋
 /2

𝑛𝑖 are consistent with the error covariance matrix about the mean, i.e.,   

𝐸{(𝑠𝑖 − �̅�)(𝑠𝑖 − �̅�)𝑇}=𝐸{ 𝐶𝑋
 /2

𝑛𝑖(𝐶𝑋
 /2

𝑛𝑖 )
𝑇}=𝐶𝑋

 /2
𝐸{𝑛𝑖 𝑛𝑖

𝑇}𝐶𝑋
 /2

=𝐶𝑋
 /2

 𝐼2𝑥2 𝐶𝑋
 /2

=𝐶𝑋, 

where 𝐸{ } is the expected value operator. 

Alternatively, the above can be performed in an equivalent manner relative to the eigenvector-aligned 

system by computing  samples of horizontal error as 𝑠𝑖 = (Φ�̅� + 𝐷 ∙ 𝑛𝑖), where “ ∙ “ is the vector dot 

product, 𝐷 a 2x1 vector containing the square-root of the eigenvalues, and Φ the 2x2 transformation 

matrix from the original Cartesian coordinate system to the eigenvector-aligned coordinate system.  The 

speed varies little between the two approaches. 

Due to its use of 1E6 random samples, the computational accuracy of the above algorithm is directly 

associated with statistical significance, and resultant computational error is expected to be on the order 

of 1/sqrt(1E6), or a 0.1% relative error.  This assumes reasonable and practical probability values that 

are within the interval  [0.1, 0.999], and that the square-root of the smallest to the largest eigenvalue 

𝑟 > 0.0001, i.e., applicable to virtually any valid error covariance matrix of interest.  
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5.4.2.3 Examples of Monte Carlo Matrix Square Root Method 

The following are examples of the application of Equation/Algorithm (5.4.2.2-1).   

The first example assumes a mean-value of zero and a 2x2 diagonal error covariance with 100 meters-

squared in each diagonal.  The equation was applied twice: once for CE_50 and once for CE_95.   

The results are plotted in Figure 5.4.2.3-1, including the first 10,000 of the 1,000,000 independent 

samples used in the calculation of CE_50 for context.  (The CE_50 circle in the figure was computed 

using all 1,000,000 independent samples.  The CE_95 circle was computed similarly, but used a different 

set of 1,000,000 independent samples for convenience. Both circles are centered at zero by definition.)   

 

Figure 5.4.2.3-1: Example 1 - CE_50 circle (red), CE_95  

circle (black), and 10,000 of 1,000,000 random samples 
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The next example assumes a mean-value �̅�𝑇 = [10 5] meters, and an error covariance matrix about 

the mean 𝐶𝑋 =  102 0.75 × 10 × 12
. 122   meters-squared.  The equation was applied twice: once for 

CE_50 and once for CE_95.   

The results are plotted in Figure 5.4.2.3-2, including the first 10,000 of the 1,000,000 independent 

samples used in the calculation of CE_50 for context.  (The CE_50 circle in the figure was computed 

using all 1,000,000 independent samples.  The CE_95 circle was computed similarly, but used a different 

set of 1,000,000 independent samples for convenience. Both circles are centered at zero by definition.)   

 

Figure 5.4.2.3-2: Example 2 - CE_50 circle (red), CE_95  

circle (black), and 10,000 of 1,000,000 random samples 

Note that sample results (blue points) are not centered about zero and in a non-symmetric fashion due 

to a mean-value with different non-zero components in the x and y directions.  Also note that the actual 

statistical significance is greater than that implied by the figure, which displays only 1/100_th the actual 

number of samples used in the calculation of CE_50.  
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5.4.2.4 CE_XX Computation Method Selection  

Pseudo-code (MATLAB) for the computation of CE_XX is presented in Appendix C corresponding to the 

following operational, priority-ordered methods/equations: 

(1) Baseline table interpolation (mean-value zero, p=0.5, 0.9. 0.95, 0.99, or 0.999), see Equation (5.4.2.1-

1). 

(2) Monte Carlo Matrix Square Root (arbitrary mean-value and probability level), see Equation (5.4.2.2-

1). 

(3) Integral Equation (mean-value zero, arbitrary probability level), see Equation (5.4.2-2). 

Operationally, Method (1) is the preferred method for the fixed levels of probability previously specified 

and when the mean-value of predictive error is zero, which is almost always the case.  It has small 

calculation error and is much faster than all other methods.   

Operationally, Method (2) is preferred over Method (3) due to no extreme variations in calculation time, 

although the latter has less calculation error.  Method (3) is the preferred method for the generation of 

new interpolation tables corresponding to probability levels not already fixed.   

Note that Method (3)’s Equation (5.4.2-2) can also be used when the mean-value is not zero, but it does 

not converge as fast as when the mean-value equals zero, or not at all a small percentage of the time; 

hence, it was left out of the above list, although pseudo-code is also available in Appendix C.  The 

convergence issue and how to detect it is also discussed further in Appendix C.   

In general, when a non-zero mean is added, the solution to Equation (5.4.2-2) becomes more difficult 

and time-consuming.  The solution involves an iterative search over numerical evaluation of the integral 

such that the resultant probability is near the specified amount on the left side of the equation.  This 

becomes more difficult because the candidate CE circle is centered about the origin, not the mean-value 

about which the error covariance is “centered”.  (See Figure 5.4.2.3-2 as a corresponding, but sample-

based, example.)  Further note that in order to improve convergence and throughput corresponding to 

Equation (5.4.2-2), the square-root of the smallest to largest eigenvalue ratio is assumed 𝑟 ≥ 0.02 if the 

mean-value is zero, otherwise 𝑟 ≥ 0.05. 

Table 5.4.2.6-1 of Section 5.4.2.6 presents a performance summary for all methods. 
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5.4.2.5 Examples of CE_XX computation 

Examples are as follows: 

(1) Assume a desired probability level of 90%,            

a mean error of zero, and 𝐶𝑋 =  
4 2
2 3

  meters-squared.  Thus, baseline table interpolation (Equation 

(5.4.2-6)) is applicable per the ordered priorities of Section 5.4.2.4 and is the first choice: 

Eigenvalues equal 5.562 and 1.438 meters-squared       

𝜎𝑒𝑖𝑔 𝑚𝑎𝑥 = 2.36 meters, 𝑟 = .509 

𝑅∗ = 1.74 (via linear interpolation: 
0.04 

0.05
1.7371 +

0.009

0.05
1.7621 = 1.7416) 

𝐶𝐸 90 = 𝑅∗𝜎𝑚𝑎𝑥 = 4.11 meters. 

(2) Assume a desired probability level of 90%,            

a mean-value �̅�𝑇 = [1 −3] , and 𝐶𝑋 =  
4 2
2 3

  meters-squared.  Thus, since the mean-value is not 

zero, the Monte-Carlo Matrix Square Root method (Equation (5.4.2.2-1)) is applicable: 

𝐶𝐸 90 = 5.69 meters. 

(3) Assume a desired probability level of 70% and the smallest possible calculation error,    

a mean error of zero, and 𝐶𝑋 =  
4 2
2 3

  meters-squared.  Thus, since p=0.7 is not one of the fixed 

probability levels previously specified, the Integral Equation with a mean-value of zero (Equation (5.4.2-

2)) is applicable: 

Eigenvalues equal 5.562 and 1.438 meters-squared       

𝜎𝑒𝑖𝑔 𝑚𝑎𝑥 = 2.36 meters, 𝑟 = .509 

𝐶𝐸 70 = 2.81 meters. 
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5.4.2.6 CE_XX Performance Summary 

A detailed performance evaluation/comparison was made for all the above CE_XX computation 

methods.  Performance corresponds to both calculation error and throughput, and corresponds to non-

optimized MATLAB code on a notebook computer.  Performance details are presented in Appendix C 

and summarized below in Table 5.4.2.6-1: 

Table 5.4.2.6-1:  Performance Summary for CE_XX Calculations 

 

Thus, for example, given that the mean-value for the magnitude of relative error for the Monte Carlo 

covariance matrix square root approach is 0.05% per the above table, if the true CE_XX equals 5 meters, 

we would expect the computed value to be the correct value 5.0 +/- 0.0025 meters. Alternatively, given 

that the 99th percentile computation error is 0.35% per the above table, there is an approximate 99% 

probability that the computed value will be within the interval 5.0 +/- 0.0175 meters.  

Note that, as discussed earlier, the Integral Equation approach for an arbitrary probability level and for 

an arbitrary mean-value can have convergence problems for a small percentage of cases (approximately 

0.1% or 1:1000).  However, they are almost always detectable as discussed in Appendix C.  Also, as 

indicated by the asterisk in some of the above “max absolute relative error” cell entries, these values 

can increase up to a value of 40% when convergence is not achieved. 

Also, although the Monte Carlo covariance matrix square root approach has somewhat larger calculation 

error than does the Integral Equation approach, it is still reasonable for an operational environment and 

it has no extreme calculation times as does the Integral Equation approach.  It is also applicable to 

virtually any error covariance matrix since ratio 𝑟 > 0.0001, i.e., always “converges”, even if the 

corresponding error ellipse has a very large difference in lengths of the semi-major and semi-minor axis. 

 Finally, the results of Table 5.4.2.6-1 are empirical and based on thousands of simulation cases, each 

case corresponding to an arbitrarily selected (full) 2x2 error covariance matrix, and if applicable, an 

arbitrary 2x1 mean-value and an arbitrary probability level within the interval [0.1,0.999].  Method vs. 

different Method direct comparisons were made, as well as repeatability tests for each specific Method.  

In general, larger magnitude relative errors were achieved when the probability level was somewhat 

extreme (𝑝 < 0.15 or 𝑝 > 0.95) and/or the ratio 𝑟 very small.  These characteristics also contributed to 

infrequent integral equation convergence problems when the mean-value was not zero. 

  

Method ratio r > % conv

zero arbitrary fixed arbitrary mean max mean 99th perc max

Table Interp yes no yes no 0 0.0001 0.0002 0.01 0.04 0.1 n/a

M.C. Cov Sqrt yes yes yes yes 0.0001 0.09 0.15 0.05 0.35 0.6 n/a

Integral Eqn yes no yes yes 0.02 0.08 1.3 0.005 0.02 0.09 100

Integral Eqn no yes yes yes 0.05 0.1 1.5 0.005 0.02 0.09* 99.9

CE_XX

mean-value probabilities execution time (s) |rel error| (%)
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5.4.3 Spherical Error (SE) 

The definition and derivations/computation for SE is similar to that described above for CE, but 
extended from two dimensions to three dimensions.   
 
In particular, SE_XX is defined as that spherical radius R such that: 
 

𝑝 =
 

(2𝜋)3/2det (𝐶𝑋)1/2 ∭𝑒− /2((𝑋−�̅�)𝑇𝐶𝑋
−1(𝑋−�̅�)  𝑑𝑥𝑑𝑦𝑑𝑧,                  (5.4.3-1) 

 

integrated over the region √𝑥2 + 𝑦2 + 𝑧2 ≤ 𝑅, and where probability 𝑝 = 𝑋𝑋/100, 3d error 휀𝑋𝑇 =
[𝜖𝑥 𝜖𝑦 𝜖𝑧] is defined as 𝑋𝑇 = [𝑥 𝑦 𝑧]  for notational convenience, with mean-value 𝜖𝑋̅̅̅̅  defined 
as �̅� = [�̅� �̅� 𝑧̅], and 3 × 3 error covariance matrix 𝐶𝑋 about the mean.  Note that if the mean-value is 
not zero, the radius 𝑅 is still relative to the origin [0 0 0]𝑇, per the standard definition of SE_XX. 
 
 
If the x-y-z coordinate system is assumed eigenvector aligned and the mean-value transformed to that 
system, we also have the alternate and equivalent formulation: 
 

𝑝 =
 

(2𝜋)3/2𝜎𝑚𝑎𝑥𝜎𝑚𝑖𝑑𝜎𝑚𝑖𝑛
∭𝑒

− /2((
𝑥−�̅�

𝜎𝑚𝑎𝑥
)
2
+(

𝑦−�̅�

𝜎𝑚𝑖𝑑
)
2

+(
𝑧−�̅�

𝜎𝑚𝑖𝑛
)
2

)
𝑑𝑥𝑑𝑦𝑑𝑧  ,                (5.4.3-2) 

 

integrated over the region √𝑥2 + 𝑦2 + 𝑧2 ≤ 𝑅, where the eigenvalues 𝜎𝑚𝑎𝑥
2 , 𝜎𝑚𝑖𝑑

2 , and 𝜎𝑚𝑖𝑛
2  (assumed 

associated with coordinates x, y, and z, respectively, for notational convenience) are the elements of the 
diagonal error covariance matrix  𝐶𝑋 expressed in the eigenvector aligned system. 
 
Either of the above equations (5.4.3-1) or (5.4.3-2) can be solved for iteratively for 𝑅, given the desired 
probability level 𝑝 = 𝑋𝑋/100.  Note that the right side of the corresponding equation for a given 
iteration is solved for numerically.  Thus, we have: 
 
𝑆𝐸 𝑋𝑋 = 𝑅.                     (5.4.3-3) 
 
Furthermore, assuming a mean-value of zero and an additional change of variables from the 
eigenvector-aligned x-y-z system to a scaled eigenvector aligned x*-y*-z* system corresponding to   
𝑥/𝜎𝑚𝑎𝑥 → 𝑥∗, 𝑦/𝜎𝑚𝑖𝑑 → 𝑦∗, and 𝑧/𝜎𝑚𝑖𝑛 → 𝑧∗, Equation (5.4.3-2) can also be written as: 
 
 

𝑝 =
 

(2𝜋)3/2 ∭𝑒− /2(𝑥∗2+𝑦∗2+𝑧∗2) 𝑑𝑥𝑑𝑦𝑑𝑧 ,                  (5.4.3-4) 

integrated over the region √𝑥∗2 + 𝑟 
2𝑦∗2 + 𝑟2

2𝑧∗2 ≤ 𝑅/𝜎𝑚𝑎𝑥 , where 𝑟 = 𝜎𝑚𝑖𝑑/𝜎𝑚𝑎𝑥 and 𝑟2 =
𝜎𝑚𝑖𝑛/𝜎𝑚𝑎𝑥 .   
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If we also assume that 𝜎𝑚𝑎𝑥 = 1, it follows that the value 𝑅 = 𝑅(𝑝, 𝑟 , 𝑟2), such that the above integral 
equals the desired level of probability p, is related to SE_XX as follows: 
 
𝑆𝐸 𝑋𝑋 = 𝑅(𝑝, 𝑟 , 𝑟2)𝜎𝑚𝑎𝑥,                    (5.4.3-5) 
 
where 𝜎𝑚𝑎𝑥 is the square root of the maximum eigenvalue of 𝐶𝑋, 𝑟 = 𝜎𝑒𝑖𝑔 𝑚𝑖𝑑/𝜎𝑒𝑖𝑔 𝑚𝑎𝑥 , and 𝑟2 =

𝜎𝑒𝑖𝑔 𝑚𝑖𝑛/𝜎𝑒𝑖𝑔 𝑚𝑎𝑥.  

 
Typically 𝑅(𝑝, 𝑟 , 𝑟2)  is pre-computed for all combination of values of 𝑟 = 0, 0.05, 0.1, . . 0.95,1.0 and  
𝑟2 = 0, 0.05, 0.1, . . 0.95,1.0, i.e., 21x21=441 values or table entries, and then interpolated appropriately. 
 

A given entry for the table is precomputed by, setting �̅� = 0 and 𝐶𝑋 = [

𝜎𝑚𝑎𝑥
2 0 0

0 𝜎𝑚𝑖𝑑
2 0

0 0 𝜎𝑚𝑖𝑛
2

] to  

[

1 0 0
0 𝑟 

2 0

0 0 𝑟2
2
] and solving Equation (5.4.3-2) for 𝑅.  An exception corresponds to values of 𝑟 = 0 or 𝑟2 =

0, where appropriate table values correspond to limiting arguments.  In particular, if 𝑟2 = 0, SE_XX table 
entries correspond to CE_XX table entries, i.e., the expected magnitude of error in the third dimension 
approaches zero or is a “non-entity”. 
 
Tables 5.4.3-1 and 5.4.3-2 are precomputed tables of 𝑅(𝑝 = 0.5, 𝑟 , 𝑟2), 𝑅(𝑝 = 0.9, 𝑟 , 𝑟2),  𝑅(𝑝 =
0.95, 𝑟 , 𝑟2),   𝑅(𝑝 = 0.99, 𝑟 , 𝑟2), and 𝑅(𝑝 = 0.999, 𝑟 , 𝑟2).  All table entries are presented although 
each table is symmetric. 
 

 
Table 5.4.3-1: Spherical Error (SE) multiplier  𝑅(𝑝 = 0.5, 𝑟 , 𝑟2) versus ratios r1 and r2 

 

 
 
  

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.00 0.6745 0.6763 0.6820 0.6916 0.7059 0.7254 0.7499 0.7779 0.8079 0.8389 0.8704 0.9021 0.9337 0.9651 0.9962 1.0271 1.0577 1.0880 1.1181 1.1479 1.1774

0.05 0.6763 0.6782 0.6838 0.6934 0.7076 0.7271 0.7516 0.7795 0.8094 0.8404 0.8719 0.9035 0.9350 0.9664 0.9975 1.0283 1.0589 1.0891 1.1192 1.1489 1.1784

0.10 0.6820 0.6838 0.6894 0.6989 0.7130 0.7324 0.7567 0.7844 0.8141 0.8449 0.8762 0.9077 0.9390 0.9703 1.0013 1.0320 1.0625 1.0926 1.1225 1.1522 1.1817

0.15 0.6916 0.6934 0.6989 0.7084 0.7223 0.7414 0.7654 0.7927 0.8221 0.8526 0.8836 0.9147 0.9459 0.9768 1.0077 1.0381 1.0684 1.0984 1.1282 1.1578 1.1870

0.20 0.7059 0.7076 0.7130 0.7223 0.7359 0.7546 0.7781 0.8048 0.8336 0.8636 0.8941 0.9248 0.9556 0.9862 1.0167 1.0469 1.0769 1.1067 1.1362 1.1655 1.1947

0.25 0.7254 0.7271 0.7324 0.7414 0.7546 0.7727 0.7952 0.8211 0.8491 0.8783 0.9081 0.9382 0.9684 0.9986 1.0286 1.0584 1.0881 1.1174 1.1466 1.1756 1.2045

0.30 0.7499 0.7516 0.7567 0.7654 0.7781 0.7952 0.8167 0.8414 0.8684 0.8966 0.9256 0.9549 0.9844 1.0140 1.0434 1.0728 1.1019 1.1309 1.1597 1.1883 1.2168

0.35 0.7779 0.7795 0.7844 0.7927 0.8048 0.8211 0.8414 0.8651 0.8909 0.9181 0.9462 0.9748 1.0035 1.0324 1.0612 1.0899 1.1185 1.1470 1.1753 1.2035 1.2315

0.40 0.8079 0.8094 0.8141 0.8221 0.8336 0.8491 0.8684 0.8909 0.9157 0.9420 0.9692 0.9970 1.0251 1.0533 1.0814 1.1096 1.1376 1.1656 1.1934 1.2211 1.2488

0.45 0.8389 0.8404 0.8449 0.8526 0.8636 0.8783 0.8966 0.9181 0.9420 0.9675 0.9939 1.0210 1.0484 1.0760 1.1036 1.1313 1.1588 1.1863 1.2137 1.2409 1.2681

0.50 0.8704 0.8719 0.8762 0.8836 0.8941 0.9081 0.9256 0.9462 0.9692 0.9939 1.0197 1.0462 1.0730 1.1002 1.1273 1.1545 1.1816 1.2086 1.2356 1.2625 1.2893

0.55 0.9021 0.9035 0.9077 0.9147 0.9248 0.9382 0.9549 0.9748 0.9970 1.0210 1.0462 1.0722 1.0985 1.1251 1.1519 1.1788 1.2055 1.2322 1.2589 1.2854 1.3119

0.60 0.9337 0.9350 0.9390 0.9459 0.9556 0.9684 0.9844 1.0035 1.0251 1.0484 1.0730 1.0985 1.1245 1.1508 1.1772 1.2037 1.2302 1.2567 1.2830 1.3093 1.3355

0.65 0.9651 0.9664 0.9703 0.9768 0.9862 0.9986 1.0140 1.0324 1.0533 1.0760 1.1002 1.1251 1.1508 1.1767 1.2029 1.2291 1.2554 1.2817 1.3078 1.3339 1.3599

0.70 0.9962 0.9975 1.0013 1.0077 1.0167 1.0286 1.0434 1.0612 1.0814 1.1036 1.1273 1.1519 1.1772 1.2029 1.2288 1.2549 1.2810 1.3070 1.3330 1.3590 1.3848

0.75 1.0271 1.0283 1.0320 1.0381 1.0469 1.0584 1.0728 1.0899 1.1096 1.1313 1.1545 1.1788 1.2037 1.2291 1.2549 1.2807 1.3067 1.3325 1.3585 1.3843 1.4101

0.80 1.0577 1.0589 1.0625 1.0684 1.0769 1.0881 1.1019 1.1185 1.1376 1.1588 1.1816 1.2055 1.2302 1.2554 1.2810 1.3067 1.3324 1.3582 1.3840 1.4098 1.4355

0.85 1.0880 1.0891 1.0926 1.0984 1.1067 1.1174 1.1309 1.1470 1.1656 1.1863 1.2086 1.2322 1.2567 1.2817 1.3070 1.3325 1.3582 1.3840 1.4098 1.4356 1.4611

0.90 1.1181 1.1192 1.1225 1.1282 1.1362 1.1466 1.1597 1.1753 1.1934 1.2137 1.2356 1.2589 1.2830 1.3078 1.3330 1.3585 1.3840 1.4098 1.4355 1.4612 1.4869

0.95 1.1479 1.1489 1.1522 1.1578 1.1655 1.1756 1.1883 1.2035 1.2211 1.2409 1.2625 1.2854 1.3093 1.3339 1.3590 1.3843 1.4098 1.4356 1.4612 1.4869 1.5125

1.00 1.1774 1.1784 1.1817 1.1870 1.1947 1.2045 1.2168 1.2315 1.2488 1.2681 1.2893 1.3119 1.3355 1.3599 1.3848 1.4101 1.4355 1.4611 1.4869 1.5125 1.5382

r1

r2
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Table 5.4.3-2: Spherical Error (SE) multiplier  𝑅(𝑝 = 0.9, 𝑟 , 𝑟2) versus ratios r1 and r2 

 

 
 
Tables 5.4.3-3 – 5.4.3-5 were omitted to save space.  All five tables are in Appendix C, as well as in a 
format suitable for copying, assuming this document is a suitable digital file (e.g., word document). 
 
 

5.4.3.1 Baseline Computation Method: Table Interpolation 

Thus, the algorithm for computation of SE_XX , given the usual assumption of a mean error equal to 

zero, and corresponding to a (full) 3x3 error covariance matrix 𝐶𝑋 expressed relative to an arbitrary 

Cartesian coordinate system is as follows: 

(1) Compute the eigenvalues of 𝐶𝑋:  𝜎𝑒𝑖𝑔 𝑚𝑎𝑥
2 , 𝜎𝑒𝑖𝑔 𝑚𝑖𝑑

2 , 𝜎𝑒𝑖𝑔 𝑚𝑖𝑛
2 ,            (5.4.3.1-1) 

assumed in descending order    

(2) Compute 𝜎𝑒𝑖𝑔 𝑚𝑎𝑥, 𝑟 = 𝜎𝑒𝑖𝑔 𝑚𝑖𝑑/𝜎𝑒𝑖𝑔 𝑚𝑎𝑥, 𝑟2 = 𝜎𝑒𝑖𝑔 𝑚𝑖𝑛/𝜎𝑒𝑖𝑔 𝑚𝑎𝑥 

(3) Based on the desired probability level XX (%) and the computed values 𝑟 , 𝑟2, perform bilinear  

interpolation of the appropriate table 𝑅(𝑝 = 𝑋𝑋/100, 𝑟 , 𝑟2) of Section 5.4.3 for a normalized radius 

value 𝑅∗ 

(4) 𝑆𝐸 𝑋𝑋 = 𝑅∗𝜎𝑒𝑖𝑔 𝑚𝑎𝑥 

  

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.00 1.6449 1.6456 1.6479 1.6518 1.6573 1.6646 1.6738 1.6852 1.6992 1.7163 1.7371 1.7621 1.7915 1.8251 1.8625 1.9034 1.9472 1.9936 2.0424 2.0932 2.1460

0.05 1.6456 1.6464 1.6487 1.6525 1.6581 1.6654 1.6745 1.6860 1.6999 1.7170 1.7378 1.7628 1.7922 1.8258 1.8632 1.9040 1.9478 1.9942 2.0429 2.0938 2.1466

0.10 1.6479 1.6487 1.6509 1.6548 1.6604 1.6676 1.6769 1.6882 1.7021 1.7192 1.7400 1.7650 1.7944 1.8279 1.8652 1.9060 1.9497 1.9961 2.0448 2.0956 2.1483

0.15 1.6518 1.6525 1.6548 1.6587 1.6642 1.6714 1.6806 1.6920 1.7059 1.7229 1.7436 1.7686 1.7979 1.8314 1.8687 1.9094 1.9530 1.9993 2.0479 2.0987 2.1512

0.20 1.6573 1.6581 1.6604 1.6642 1.6697 1.6769 1.6861 1.6974 1.7113 1.7282 1.7489 1.7738 1.8030 1.8364 1.8735 1.9141 1.9576 2.0039 2.0523 2.1029 2.1555

0.25 1.6646 1.6654 1.6676 1.6714 1.6769 1.6841 1.6932 1.7045 1.7183 1.7352 1.7558 1.7806 1.8097 1.8429 1.8799 1.9204 1.9638 2.0098 2.0581 2.1086 2.1610

0.30 1.6738 1.6745 1.6769 1.6806 1.6861 1.6932 1.7023 1.7135 1.7273 1.7441 1.7646 1.7892 1.8182 1.8513 1.8881 1.9283 1.9715 2.0173 2.0654 2.1156 2.1678

0.35 1.6852 1.6860 1.6882 1.6920 1.6974 1.7045 1.7135 1.7247 1.7383 1.7550 1.7755 1.7999 1.8286 1.8614 1.8981 1.9380 1.9809 2.0265 2.0743 2.1243 2.1762

0.40 1.6992 1.6999 1.7021 1.7059 1.7113 1.7183 1.7273 1.7383 1.7519 1.7685 1.7887 1.8130 1.8414 1.8740 1.9102 1.9498 1.9923 2.0375 2.0850 2.1347 2.1862

0.45 1.7163 1.7170 1.7192 1.7229 1.7282 1.7352 1.7441 1.7550 1.7685 1.7849 1.8049 1.8289 1.8569 1.8890 1.9248 1.9639 2.0060 2.0506 2.0977 2.1469 2.1981

0.50 1.7371 1.7378 1.7400 1.7436 1.7489 1.7558 1.7646 1.7755 1.7887 1.8049 1.8245 1.8481 1.8757 1.9071 1.9422 1.9807 2.0221 2.0663 2.1127 2.1614 2.2120

0.55 1.7621 1.7628 1.7650 1.7686 1.7738 1.7806 1.7892 1.7999 1.8130 1.8289 1.8481 1.8710 1.8979 1.9287 1.9630 2.0007 2.0413 2.0847 2.1304 2.1783 2.2282

0.60 1.7915 1.7922 1.7944 1.7979 1.8030 1.8097 1.8182 1.8286 1.8414 1.8569 1.8757 1.8979 1.9240 1.9539 1.9873 2.0240 2.0637 2.1061 2.1510 2.1980 2.2472

0.65 1.8251 1.8258 1.8279 1.8314 1.8364 1.8429 1.8513 1.8614 1.8740 1.8890 1.9071 1.9287 1.9539 1.9827 2.0151 2.0507 2.0894 2.1308 2.1746 2.2207 2.2689

0.70 1.8625 1.8632 1.8652 1.8687 1.8735 1.8799 1.8881 1.8981 1.9102 1.9248 1.9422 1.9630 1.9873 2.0151 2.0464 2.0809 2.1185 2.1587 2.2015 2.2464 2.2936

0.75 1.9034 1.9040 1.9060 1.9094 1.9141 1.9204 1.9283 1.9380 1.9498 1.9639 1.9807 2.0007 2.0240 2.0507 2.0809 2.1143 2.1506 2.1898 2.2314 2.2753 2.3214

0.80 1.9472 1.9478 1.9497 1.9530 1.9576 1.9638 1.9715 1.9809 1.9923 2.0060 2.0221 2.0413 2.0637 2.0894 2.1185 2.1506 2.1858 2.2237 2.2642 2.3070 2.3520

0.85 1.9936 1.9942 1.9961 1.9993 2.0039 2.0098 2.0173 2.0265 2.0375 2.0506 2.0663 2.0847 2.1061 2.1308 2.1587 2.1898 2.2237 2.2605 2.2998 2.3415 2.3854

0.90 2.0424 2.0429 2.0448 2.0479 2.0523 2.0581 2.0654 2.0743 2.0850 2.0977 2.1127 2.1304 2.1510 2.1746 2.2015 2.2314 2.2642 2.2998 2.3380 2.3786 2.4213

0.95 2.0932 2.0938 2.0956 2.0987 2.1029 2.1086 2.1156 2.1243 2.1347 2.1469 2.1614 2.1783 2.1980 2.2207 2.2464 2.2753 2.3070 2.3415 2.3786 2.4180 2.4597

1.00 2.1460 2.1466 2.1483 2.1512 2.1555 2.1610 2.1678 2.1762 2.1862 2.1981 2.2120 2.2282 2.2472 2.2689 2.2936 2.3214 2.3520 2.3854 2.4213 2.4597 2.5003

r1

r2
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5.4.3.2 Alternate Computation Method: Monte Carlo Matrix Square Root 

The following alternate approach to the computation of SE_XX is applicable to arbitrary mean-values 

and arbitrary probability levels, is computationally accurate and reasonably fast:     

(1) Compute 1E6 independent samples of 3d error: 𝑠𝑖 = �̅� + 𝐶𝑋
 /2

𝑛𝑖 , 𝑖 = 1, . . ,1𝐸6,          (5.4.3.2-1) 

where �̅� and 𝐶𝑋 are the 3x1 mean and the 3x3 error covariance about the mean relative to the original 

(non-eigenvector aligned) coordinate system, 𝑛𝑖 is a three-element vector with each element the 

realization of an  independent 𝑁(0,1) random variable, and where the superscript “1/2”  indicates 

principal matrix square root.  �̅� and 𝑛𝑖 are 3x1 vectors, and 𝐶𝑋
 /2

 is a 3x3 matrix. 

(2) Order the magnitudes of the 3d error samples from smallest to largest, and designate 𝑅𝐸𝑋𝑋 the 

XX_th percent largest, and 𝑅𝐸𝑋𝑋
∗  the next largest magnitude. 

(3) SE_XX=(𝑅𝐸𝑋𝑋 + 𝑅𝐸𝑋𝑋
∗ )/2 ). 

Note that the symmetric 𝐶𝑋
 /2

 is computed once prior to generating the independent samples, and the 

samples 𝐶𝑋
 /2

𝑛𝑖 are consistent with the error covariance matrix about the mean, i.e.,   

𝐸{(𝑠𝑖 − �̅�)(𝑠𝑖 − �̅�)𝑇}=𝐸{ 𝐶𝑋
 /2

𝑛𝑖(𝐶𝑋
 /2

𝑛𝑖 )
𝑇}=𝐶𝑋

 /2
𝐸{𝑛𝑖 𝑛𝑖

𝑇}𝐶𝑋
 /2

=𝐶𝑋
 /2

 𝐼3𝑥3 𝐶𝑋
 /2

=𝐶𝑋, 

where 𝐸{ } is the expected value operator. 

Alternatively, the above can be performed in an equivalent manner relative to the eigenvector-aligned 

system by computing samples as 𝑠𝑖 = (Φ�̅� + 𝐷 ∙ 𝑛𝑖), where “ ∙ “ is the vector dot product , 𝐷 a 3x1 

vector containing the square-root of the eigenvalues, and Φ the 3x3 transformation matrix from the 

original Cartesian coordinate system to the eigenvector-aligned coordinate system.  The speed varies 

little between the two approaches. 

Due to its use of 1E6 random samples, the computational accuracy of the above algorithm is directly 

associated with statistical significance, and resultant computational error is expected to be on the order 

of 1/sqrt(1E6), or a 0.1% relative error.  This assumes reasonable and practical probability values that 

are within the interval  [0.1, 0.999], and that the square-root of the smallest to the largest eigenvalue 

𝑟 > 0.0001, i.e., applicable to virtually any valid error covariance matrix.     

5.4.3.3 SE_XX Computation Method Selection 

Pseudo-code (MATLAB) for the computation of SE_XX is presented in Appendix C corresponding to the 

following operationally, priority-ordered methods/equations: 

(1) Baseline table interpolation (mean-value zero, p=0.5, 0.9. 0.95, 0.99, or 0.999), see Equation 

(5.4.3.1-1). 

(2) Monte Carlo Matrix Square Root (arbitrary mean-value and probability level), see Equation 

(5.4.3.2-1). 

(3) Integral Equation (mean-value zero, arbitrary probability level), see Equation (5.4.3-2). 
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Operationally, Method (1) is the preferred method for the fixed levels of probability previously specified 

and when the mean-value of predictive error zero, which is almost always the case.  It has small 

calculation error and is much faster than all other methods.   

Operationally, Method (2) is preferred over Method (3) due to no extreme variations in calculation time, 

although the latter has less calculation error.  Method (3) is the preferred method for the generation of 

new interpolation tables corresponding to probability levels not already fixed.   

Note that Method (3)’s Equation (5.4.3-2) can also be used when the mean-value is not zero, but it does 

not converge as fast as when the mean-value equals zero, or not at all a small percentage of the time; 

hence, it was left out of the above list, although pseudo-code is also available in Appendix C.  The 

convergence issue and how to detect it is also discussed further in Appendix C.   

In general, when a non-zero mean is added, the solution to Equation (5.4.3-2) becomes more difficult 

and time-consuming.  The solution involves an iterative search over numerical evaluation of the integral 

such that the resultant probability is near the specified amount on the left side of the equation.  This 

becomes more difficult because the candidate SE circle is centered about the origin, not the mean-value 

about which the error covariance is “centered”.  Further note that in order to improve convergence and 

throughput corresponding to Equation (5.4.3-2), the square-root of the smallest to largest eigenvalue 

ratio is assumed 𝑟 ≥ 0.02 if the mean-value is zero, otherwise 𝑟 ≥ 0.10. 

Table 5.4.3.5-1 of Section 5.4.3.5 presents a performance summary for all methods 

 

5.4.3.4 Examples of SE_XX computation 

Examples are as follows: 

(1) Assume a desired probability level of 90%, a mean error of zero, and 𝐶𝑋 =  
4 −5.4 6

−5.4 9 −9
6 −9 25

  

meters-squared.  Thus, baseline table interpolation (Equation (5.4.3.1-1)) is applicable and is the first 

choice: 

Eigenvalues equal 31.2, 6.22, and 0.55 meters-squared       

𝜎𝑒𝑖𝑔 𝑚𝑎𝑥 = 5.59 meters, 𝑟 = 0.446, 𝑟2 = 0.132 

𝑅∗ = 1.72 ( via bilinear linear interpolation: 
0.0 8

0.05
(
0.004

0.05
1.7021 +

0.046

0.05
1.7192) + 

 
0.032

0.05
(
0.004

0.05
1.7059 +

0.046

0.05
1.7229) = 1.7202 ) 

𝑆𝐸 90 = 𝑅∗𝜎𝑒𝑖𝑔 𝑚𝑎𝑥 = 9.61 meters. 
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(2) Assume a desired probability level of 90%, a mean-value �̅�𝑇 = [1 0 −1], and 𝐶𝑋 =

 
4 −5.4 6

−5.4 9 −9
6 −9 25

  meters-squared. Thus, since the mean-value is not zero, the Monte-Carlo Matrix 

Square Root method (Equation (5.4.3.2-1)) is applicable: 

𝑆𝐸 90 = 9.76 meters. 

(3) Assume a desired probability level of 70%, and the lowest possible calculation error, 

 a mean error of zero, and 𝐶𝑋 =  
4 −5.4 6

−5.4 9 −9
6 −9 25

  meters-squared.  Thus, since p=0.7 is not one of 

the fixed probability levels previously specified, the Integral Equation with a mean-value of zero 

(Equation (5.4.3-2)) is applicable: 

𝑆𝐸 70 = 6.47 meters. 

 

5.4.3.5 SE_XX Performance Summary 

A detailed performance evaluation/comparison was made for all the above SE_XX computation 

methods.  Performance corresponds to both calculation error and throughput, and corresponds to non-

optimized MATLAB code on a notebook computer.  Performance details are presented in Appendix C 

and summarized below: 

Table 5.4.3.5-1:  Performance Summary for SE_XX Calculations 

 

Thus, for example, given that the maximum for the magnitude of relative error for the Monte Carlo 

covariance matrix square root approach is 0.4% per the above table, if the true CE_XX equals 5 meters, 

we would expect the computed value to have a value within 5.0 +/- 0.02 meters virtually all of the time.   

Note that, as discussed earlier, the Integral Equation approach for an arbitrary probability level and for 

an arbitrary mean-value can have convergence problems for some cases (approximately 0.2% or 1:500).  

However, they are almost always detectable as discussed in Appendix C.  Also, as indicated by the 

asterisk in some of the above “max absolute relative error” cell entries, these values can increase up to a 

value of 40% when convergence is not achieved. 

Also, although the Monte Carlo covariance matrix square root approach has somewhat larger calculation 

error than does the Integral Equation approach, it is still reasonable for an operational environment and 

Method ratio r > % conv

zero arbitrary fixed arbitrary mean max mean 99th perc max

Table Interp yes no yes no 0 0.0002 0.0005 0.02 0.05 0.15 n/a

M.C. Cov Sqrt yes yes yes yes 0.0001 0.08 0.2 0.05 0.2 0.4 n/a

Integral Eqn yes no yes yes 0.02 8 20 0.001 0.003 0.011 100

Integral Eqn no yes yes yes 0.1 9 48 0.001 0.003 0.011* 99.8

SE_XX

mean-value probabilities execution time (s) |rel error| (%)
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has no large average or maximum calculation times as does the Integral Equation approach.  It is also 

applicable to virtually any error covariance matrix since ratio 𝑟 > 0.0001. 

Finally, the results of Table 5.4.3.5-1 are empirical and based on thousands of simulation cases, each 

case corresponding to an arbitrarily selected (full) 3x3 error covariance matrix, and if applicable, an 

arbitrary 3x1 mean-value and an arbitrary probability level within the interval [0.1,0.999].  Method vs. 

different Method direct comparisons were made, as well as repeatability tests for each specific Method. 

In general, larger magnitude relative errors were achieved when the probability level was somewhat 

extreme (𝑝 < 0.15 or 𝑝 > 0.95) and/or the ratio 𝑟 very small.  These characteristics also contributed to 

infrequent integral equation convergence problems when the mean-value was not zero. 

 

5.5 Multi-state vector Error Covariance Matrix Definition 
In many situations, it is more convenient and provides more insight to generalize the error covariance 

matrix relative to a single state vector to a multi-state vector.  For example, a multi-state vector 

consisting of a collection of individual state vectors, each corresponding to the same stochastic process 

but at different times.  Or perhaps, corresponding to a collection of individual state vectors, all solved 

for (estimated) simultaneously in one large state vector as part of a batch estimation process.  The 

general case is detailed as follows: 

Let 𝑋𝑖  be an 𝑛𝑖𝑥1 individual state vector 𝑖.  Let the 𝑛𝑖𝑥1 random error vector 휀𝑋𝑖 represent its 

corresponding error.  (Recall that the 𝑛𝑖 components of 휀𝑋𝑖 are random variables.) 

Let 𝑋 = [𝑋 
𝑇 . . 𝑋𝑚

𝑇 ]𝑇 be the “stacked” 𝑛𝑥1 multi-state vector corresponding to the 𝑚 individual state 

vectors, and let 휀𝑋 = [휀𝑋 
𝑇 . . 휀𝑋𝑚

𝑇 ]𝑇 represent its corresponding error of the same 𝑛𝑥1 dimension, 

where 𝑛 = ∑ 𝑛𝑖
𝑚
𝑖   and the superscript 𝑇 indicates transpose.  Let 𝐶𝑋 represent the corresponding 𝑛𝑥𝑛 

multi-state vector (symmetric) error covariance matrix: 

𝐶𝑋 = 𝐸{휀𝑋휀𝑋𝑇} = 𝐸 {[

휀𝑋 휀𝑋 
𝑇 휀𝑋 휀𝑋2

𝑇

휀𝑋2휀𝑋 
𝑇 휀𝑋2휀𝑋2

𝑇
. . 휀𝑋 휀𝑋𝑚

𝑇

. . . .
. . . .

휀𝑋𝑚휀𝑋 
𝑇 휀𝑋𝑚휀𝑋2

𝑇
. . . .
. . 휀𝑋𝑚휀𝑋𝑚

𝑇

]} = [

𝐶𝑋 𝐶𝑋 2

. 𝐶𝑋2

. . 𝐶𝑋 𝑚

. . 𝐶𝑋2𝑚
. .
. .

. . . .
. 𝐶𝑋𝑚

]. (5.5-1) 

Note that 𝐶𝑋𝑖 is the 𝑛𝑖𝑥𝑛𝑖 error covariance matrix for state vector 𝑖; 𝐶𝑋𝑖𝑘 the 𝑛𝑖𝑥𝑛𝑘 error cross-

covariance matrix between state vectors 𝑖 and 𝑘, and 𝐸 is the expected-value operator.  The 휀𝑋𝑖 are 

random vectors, and the error covariance matrices are descriptive statistics based on assumed 

underlying probability distributions (not sample statistics).  The single dots “ .” in Equation (5.5-1) 

indicate symmetric entries (e.g., 𝐶𝑋2 = 𝐶𝑋 2
𝑇 ), and the double dots “..” indicate “continue the pattern”.  

𝐶𝑋 is a symmetric, positive definite matrix (strictly positive eigenvalues), i.e., invertible and a “valid” 

error covariance matrix.    

Equation (5.5-1) assumes errors have a mean-value of zero, as is typically the case for predictive errors; 

otherwise, the mean-value 𝜖𝑋̅̅̅̅ 𝑖 ≠ 0 for arbitrary state vector i, and: 
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𝐶𝑋𝑖 = 𝐸{(𝜖𝑋𝑖 − 𝜖𝑋̅̅̅̅ 𝑖)(𝜖𝑋𝑖 − 𝜖𝑋̅̅̅̅ 𝑖)
𝑇} and 𝐶𝑋𝑖𝑘 = 𝐸{(𝜖𝑋𝑖 − 𝜖𝑋̅̅̅̅ 𝑖)(𝜖𝑋𝑘 − 𝜖𝑋̅̅̅̅ 𝑘)

𝑇}.   (5.5-2) 

For most applications of interest, the dimensions of 𝑋𝑖  and 𝑋𝑘 are the same, and hence, the dimensions 

of 𝐶𝑋𝑖  and 𝐶𝑋𝑖𝑘, 1 ≤ 𝑖, 𝑘 ≤ 𝑚, are the same.  In addition, the identity of the components that make up 

𝑋𝑖  and 𝑋𝑘 are the same as well; for example, if state vector 𝑖 corresponds to ground point 𝑖 and 𝑋𝑖  its 

𝑥, 𝑦, 𝑧 ground coordinates, state vector 𝑗 corresponds to ground point 𝑗 and 𝑋𝑗 its 𝑥, 𝑦, 𝑧 ground 

coordinates in the same coordinate system.  This assumption is applicable for the remainder of this 

guidance document, except where explicitly noted otherwise. 

(Note that whether 𝐶𝑋 corresponds to the error in a multi-state or “stacked” state vector or simply the 

error in one (original) state vector, if not specified specifically in remaining sections of this document, it 

does not matter.  In addition, the dimension of the state vector is generically assumed to be 𝑛𝑥1 if not 

specified otherwise.) 

5.5.1 Details regarding a single state vector  

The error covariance matrix for state vector 𝑖 contains a statistical measure of the errors in state vector 

𝑋𝑖.  More specifically, let the 𝑛𝑖𝑥1 state error vector equal:  

휀𝑋𝑖 = [𝜖𝑥 𝑖
휀𝑥2𝑖

. . 𝜖𝑥𝑛𝑖]
𝑇.                   (5.5.1-1) 

Its corresponding (symmetric) 𝑛𝑖𝑥𝑛𝑖 error covariance matrix equals: 

𝐶𝑋𝑖 =

[
 
 
 

𝜎 𝑖

2 𝜎 𝑖2𝑖

𝜎2𝑖 𝑖
𝜎2𝑖

2

. . 𝜎 𝑖𝑛𝑖

. . 𝜎2𝑖𝑛𝑖

. . . .
𝜎𝑛𝑖 𝑖

𝜎𝑛𝑖2𝑖

. . . .

. . 𝜎𝑛𝑖
2

]
 
 
 
=

[
 
 
 
𝜎 𝑖

2 𝜎 𝑖2𝑖

. 𝜎2𝑖

2

. . 𝜎 𝑖𝑛𝑖

. . 𝜎2𝑖𝑛𝑖

. .

. .

. . . .
. 𝜎𝑛𝑖

2
]
 
 
 
 , and               (5.5.1-2) 

where, for example, the variance for first-component of state vector i ’s error is 𝜎 𝑖

2 , with corresponding 

standard deviation 𝜎 𝑖
.  (Note that, as mentioned earlier, all errors are assumed to have a mean value of 

zero, i.e., the corresponding estimate is unbiased.)  The covariance (not the “covariance matrix”) 

between the first and second component errors, both corresponding to state vector 𝑖, is 𝜎 𝑖2𝑖
.  The 

covariance specifies the intra-state vector correlation (statistical similarity) between the first and second 

component errors.  The corresponding intra-state vector correlation coefficient is defined as: 

−1 < 𝜌 𝑖2𝑖
=

𝜎1𝑖2𝑖

𝜎1𝑖
𝜎2𝑖

< 1.                   (5.5.1-3) 

Thus, the covariance can also be written as 𝜌 𝑖2𝑖
𝜎 𝑖

𝜎2𝑖
. Also, for two components with the same 

identities, the intra-state vector correlation coefficient is defined as equal to1.0, e.g.,  
𝜎1𝑖

2

𝜎1𝑖
𝜎1𝑖

= 1. 

5.5.2 Details regarding two different state vectors    

The 𝑛𝑖𝑥𝑛𝑘 (in general, non-symmetric) cross-covariance matrix corresponding to state vector 𝑖 and state 

vector 𝑘 specifies the inter-state vector correlation (statistical similarity) between the various error 

components corresponding to the two different state vectors: 
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휀𝑋𝑖 = [𝜖𝑥 𝑖
휀𝑥2𝑖

. . 𝜖𝑥𝑛𝑖]
𝑇  휀𝑋𝑘 = [𝜖𝑥 𝑘

휀𝑥2𝑘
. . 𝜖𝑥𝑛𝑘]

𝑇.             (5.5.2-1) 

𝐶𝑋𝑖𝑘 = [

𝜎 𝑖 𝑘
𝜎 𝑖2𝑘

𝜎2𝑖 𝑘
𝜎2𝑖2𝑘

. . 𝜎 𝑖𝑛𝑘

. . 𝜎2𝑖𝑛𝑘
. . . .
. . . .

. . . .

. . 𝜎𝑛𝑖𝑛𝑘

] , and                  (5.5.2-2) 

where, for example, the corresponding inter-state vector correlation coefficient between the first 

component error for state vector i and the second component error for state vector k is defined as: 

−1 < 𝜌 𝑖2𝑘
=

𝜎1𝑖2𝑘

𝜎1𝑖
𝜎2𝑘

< 1.                   (5.5.2-3) 

When the two components have the same identities, and the inter-state vector correlation coefficient is 

written as a function of “delta” between state vector applicabilities (e.g. delta time for state vectors 

from a stochastic process), the function is typically termed an “auto-correlation function”; when they 

have different identities, a “cross-correlation function”.   

5.5.3 Applicability of definitions  

Although the detailed symbology in Section 5.5.1 and 5.5.2 is unavoidably somewhat complicated, most 

of the following sections of this document don’t use symbology any “deeper” or complicated than that 

corresponding to Equation (5.5-1).   

Also, sometimes it is convenient to equate individual state vectors with individual “events”, such as 

individual “collection” times corresponding to a stochastic process.  Correspondingly, intra-state vector 

correlation and inter-state vector correlation are sometimes termed intra-event correlation and inter-

event correlation, respectively. 

Finally, when convenient, a multi-state vector and its error covariance matrix can also always be 

considered a (large) single-state vector and error covariance matrix without corresponding detail into 

individual state vectors.  See Equation (5.1.1-4) for definitions and symbology for an assumed (total) 

state vector dimension of 𝑛𝑥1. 

5.5.4 Generation of the Relative Error Covariance Matrix 

Relative error is defined between a pair of state vectors i and k as follows: 

𝜖𝑋𝑖𝑘 ≡ 𝜖𝑋𝑖 − 𝜖𝑋𝑘                    (5.5.4-1) 

Its corresponding relative error covariance matrix, assuming mean-values of zero, is equal to: 

𝑟𝑒𝑙𝐶𝑋𝑖𝑘 = 𝐸{𝜖𝑋𝑖𝑘𝜖𝑋𝑖𝑘
𝑇 } = 𝐸{(𝜖𝑋𝑖 − 𝜖𝑋𝑘)(𝜖𝑋𝑖 − 𝜖𝑋𝑘)

𝑇} =               (5.5.4.2) 

𝐸{𝜖𝑋𝑖𝜖𝑋𝑖
𝑇} − 𝐸{𝜖𝑋𝑖𝜖𝑋𝑘

𝑇} − 𝐸{𝜖𝑋𝑘𝜖𝑋𝑖
𝑇} + 𝐸{𝜖𝑋𝑘𝜖𝑋𝑘

𝑇} = 𝐶𝑋𝑖 − 𝐶𝑋𝑖𝑘 − 𝐶𝑋𝑖𝑘
𝑇 + 𝐶𝑋𝑘. 

Note that if the state vectors i and j correspond to 3d locations, the relative error covariance matrix is a 

3𝑥3 matrix.  And in many corresponding applications, errors between the two state vector components 

are positively correlated; hence, 𝐶𝑋𝑖 > 𝑟𝑒𝑙𝐶𝑋𝑖𝑘 and 𝐶𝑋𝑗 > 𝑟𝑒𝑙𝐶𝑋𝑖𝑘 (see Section 5.3.5), i.e., the expected 

magnitude of the 3𝑥1 error in the relative difference (“distance”) between the two state vectors is 

smaller than either’s individual error.  This is due to statistical “cancellation” of common errors. 
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Note that once the relative error covariance matrix is computed (and is positive definite, as expected), a 

corresponding relative error ellipsoid as well as relative accuracy summaries rel_LE, rel_CE, and rel_SE 

can be computed using exactly the same techniques as detailed in Sections 5.3 and 5.4, respectively -   

simply substitute 𝑟𝑒𝑙𝐶𝑋𝑖𝑘 for 𝐶𝑋. 

 

5.6 Propagation of Multi-State Vector Error Covariance Matrices 
In many applications of interest, either a random error vector corresponding to a single stand-alone 

state vector 𝑋, or a random error vector corresponding to a state vector 𝑋𝑖  within a multi-state vector 

𝑋, are “propagated”, i.e., mapped or projected to a random error vector corresponding to a related 

state vector 𝑋′.  The mapping is typically linear between the random error vectors, where it and its 

properties are as described in Equation (5.2.2-1).  In particular, if we assume an 𝑛𝑥1 mean-zero random 

error 𝜖𝑋 being mapped to a mean-zero 𝑚𝑥1 random error 𝜖𝑋′ via an 𝑚𝑥𝑛 matrix Ω: 

𝜖𝑋′ = Ω 𝜖𝑋 and 𝐶𝑋′ ≡ 𝐸{(𝜖𝑋′)(𝜖𝑋′ )𝑇) = Ω𝐶𝑋Ω𝑇,       (5.6-1) 

where 𝐶𝑋′ is positive definite if Ω is full rank (linearily independent rows or columns), and positive semi-

definite, if not. 

5.6.1 Error Covariance Representation in Different Coordinate Systems 

One application of the above is the transformation of an error covariance matrix from one coordinate 

system to another.  For example, assume that a MIG solution for geolocation 𝑋  and its error covariance 

matrix 𝐶𝑋 are with respect to an ECF coordinate system, as is common.  However, we want to express 

the corresponding accuracy prediction (error covariance matrix) in an ENU coordinate system, a 

common and recommended practice as well. 

Let 𝜖𝑋 and 𝜖𝑋′ represent the (unknown) 3𝑥1 error in ECF and ENU, respectively.  Let 𝐶𝑋 and 𝐶𝑋′ 

represent the 3𝑥3 error covariance matrix in ECF and ENU, respectively.  Let Ω represent the 3𝑥3 (full 

rank) ECF-to-ENU transformation matrix, an orthonormal rotation matrix.  The mean-value of 𝜖𝑋 is zero 

because the MIG estimate is unbiased; hence, the mean-value of 𝜖𝑋′ is zero as well: 

 𝜖𝑋̅̅̅̅ ′ = 𝐸{𝜖𝑋′} = 𝐸{Ω𝜖𝑋} = Ω𝐸{𝜖𝑋} = Ω𝜖𝑋̅̅̅̅ = 0.                 (5.6.1-1) 

And per Equation (5.6.1) and Equation (5.2.2-1), the solution error covariance matrix applicable to an 

ENU representation of error is a valid error covariance matrix and equal to: 

𝐶𝑋′ ≡ 𝐸{(𝜖𝑋′)(𝜖𝑋′ )𝑇) = 𝐸{(Ω𝜖𝑋)(Ω𝜖𝑋)𝑇) = Ω𝐶𝑋Ω𝑇                 (5.6.1-2) 

(Note that the actual mapping of geolocation coordinates (not their error) from ECF to ENU can be 

expressed as 𝑋′ = Ω(𝑋 − 𝑋0) = Ω𝑋 − Ω𝑋0, where 𝑋0 is the fixed origin of the ENU (local tangent 

plane) coordinate system expressed in the ECF coordinate system.  The term Ω𝑋0 has no effect on the 

mapping of errors or their covariance matrix from the ECF to ENU coordinate system since it is a 

deterministic constant.) 
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Many of the general mappings Ω of Equation (5.6-1) are based on a first-order Taylor Series expansion, 

the mathematical derivation detailed in Section 5.6.2. 

 

5.6.2 First-order Taylor Series Expansion 

Let the 𝑚𝑥1 state vector 𝑋′ be a function of the 𝑛𝑥1 state vector 𝑋, indicated as 𝑋′ = 𝑋′(𝑋). 

Perform a first-order Taylor Series expansion about the 𝑛𝑥1 operating point 𝑋0 using appropriate first-

order (vector) partial derivatives: 

𝑋′(𝑋) = 𝑋′(𝑋0) +
𝜕𝑋′(𝑋0)

𝜕𝑋
(𝑋 − 𝑋0) + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠               (5.6.2-1) 

𝜖𝑋′ ≡ 𝑋′(𝑋) − 𝑋′(𝑋0) =
𝜕𝑋′(𝑋0)

𝜕𝑋
(𝑋 − 𝑋0) + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 

𝜖𝑋′ ≡
𝜕𝑋′(𝑋0)

𝜕𝑋
𝜖𝑋 + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 

𝜖𝑋′ ≡ Ω𝜖𝑋 + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 

𝜖𝑋′ ≅ Ω𝜖𝑋 ,                      (5.6.2-2) 

and where 𝑚𝑥𝑚 𝐶𝑋′ = 𝐸{(Ω𝜖𝑋)(Ω𝜖𝑋)𝑇 = Ω𝐶𝑋Ω𝑇, and 𝑚𝑥𝑛 Ω =
𝜕𝑋′(𝑋0)

𝜕𝑋
 . 

Note that the above process or “linearization” is also the basis for underlying equations in many optimal 

estimators (see Section 5.8.1 of TGD 1 and TGD 2d in general).   

5.6.3 Other propagations 

There are other propagations that correspond to higher-order Taylor Series expansions as well as Monte 

Carlo statistical methods.  These typically correspond to various classes of estimators, and are discussed 

somewhat further in Section 5.11 of TGD 1 and TGD 2d in general. 
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5.7 Generic Methods for Generation of the Multi-State Vector Error 

Covariance Matrix  
A valid multi-state vector error covariance matrix  𝐶𝑋 can be generated by essentially three general 

methods/processes: (1) explicit a priori modeling (2) WLS batch estimator, or (3) Kalman filter (or 

smoother) estimator.  For all three methods, the corresponding mean-value of error is typically assumed 

zero.  For the last two methods, this corresponds to unbiased estimators, as typically assumed.  These 

three methods are presented in Sections 5.7.1, 5.7.2, and 5.7.3, respectively. 

5.7.1 A priori modeling 

A priori modeling typically specifies 𝐶𝑋, or sub-blocks or parameters that can generate 𝐶𝑋, for a multi-

variate state vector 𝑋 that will be available (later) during normal operations.   

For example, 𝑋 could be a measurement vector that is provided via the manual or automatic 

measurement of the pixel locations of a set of ground points in a set of images. 𝐶𝑋 is computed for the 𝑋 

in order to specify its “uncertainty”, or more correctly, its predicted accuracy.  Its computation could be 

based solely on a priori modeling from empirical information of past measurement performance, or it 

can be augmented by the feedback of internal performance metrics from the automatic correlator.  For 

this example, 𝐶𝑋 typically has zero inter-state vector correlation, i.e., measurement errors associated 

with identifying and measuring pixel locations are usually modeled as uncorrelated between points.  

(This particular example did not include the effects of sensor support data errors on the measurements, 

only “mensuration” or direct measurement error.) 

As a second example, 𝑋 could consist of a priori estimates of adjustable parameters 𝑋𝑖  for sensor 

support data that are about to be adjusted (corrected) simultaneously for 𝑚 images in a WLS batch 

adjustment.  (Or more generally, adjustable parameters for 𝑘 different sensors, each with 𝑚𝑘 

measurements of common object(s) of interest.)  The multi-state vector error covariance matrix 𝐶𝑋  is 

computed for the 𝑋 in order to specify its (pre-adjustment) predicted accuracy.  It also places “statistical 

constraints” on the size of the upcoming WLS corrections.   

In general, the computation of 𝐶𝑋 is based on the combination of empirical information of past 

performance as well as system design.  For the above example, 𝐶𝑋 typically has significant inter-state 

vector correlation, which corresponds to an a priori model of sensor support data errors as a multi-

variate stochastic process. 

In general, empirical information used to model predictive statistics (e.g., 𝐶𝑋) can include sample 

statistics of measured errors relative to “ground-truth” – see Section 5.7.1.2 for further discussion.  

Regardless the type of empirical information, the following “mechanics” for the actual 

specification/generation of 𝐶𝑋 are typical: 

A priori modeling specifies the individual 𝐶𝑋𝑖, and in some applications, this error covariance may be 

constant over all 𝑖 = 1, . . , 𝑚.  The internal structure (elements) of 𝐶𝑋𝑖  specify the intra-state vector 

correlations.  For example, if 𝐶𝑋𝑖 is a diagonal matrix, intra-state vector correlations are zero.   
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Typically, the cross-covariance 𝐶𝑋𝑖𝑘 are not provided directly by the a priori model, but are assembled 

using an a priori strictly positive definite correlation function (spdcf), 𝜌(𝛿𝑡𝑖𝑘), to specify inter-state 

vector correlation, i.e., 

 𝐶𝑋𝑖𝑘 = 𝜌(𝛿𝑡𝑖𝑘) ∙ 𝐶𝑋𝑖
 /2

𝐶𝑋𝑘
 /2

,                     (5.7.1-1) 

where the superscript 1/2 indicates matrix principal square-root, as further detailed in Section 5.8.3 of 

this document.  This form of generation is practical, relatively simple, and ensures a valid 𝐶𝑋. 

Once the appropriate 𝐶𝑋𝑖𝑗 are assembled, they are combined with the various 𝐶𝑋𝑖 to form the a priori 

𝐶𝑋 to go with the provided 𝑋.   

Note that this particular form of modeling is termed the “spdcf method”.  It is general enough to model 

errors as stochastic processes or as random fields (see TGD 1).  These can be stationary stochastic 

processes or a subclass of non-stationary stochastic processes, where the 𝐶𝑋𝑖 are allowed to vary over 𝑖 

(time) but the spdcf remains the same (same concepts for a random field are also applicable). 

5.7.1.1 Gauss-Markov as an underlying error model 

A time sequence of sensor a priori metadata errors, as well as many other error processes, may be 

reasonably modeled as a first order, mean-zero, Gauss-Markov stochastic process.  In particular, 

assuming a scalar error (e.g., sensor position x-component error as a function of time or index 𝑖) and 

equal time steps for convenience:   

𝜖𝑥𝑖+ = 𝑎𝑥𝜖𝑥𝑖 + 𝜔𝑖  , 𝑤ℎ𝑒𝑟𝑒  𝑎𝑥 = 𝑒−Δ𝑡/𝑇𝑥  , 𝐸{𝜖𝑥𝑖𝜖𝑥𝑘} =  𝑒−|𝑖−𝑘|Δ𝑡/𝑇𝑥  𝜎𝑥
2 , and          (5.7.1.1-1) 

𝐸{𝜔𝑖𝜔𝑘} = (1 − 𝑎𝑥
2)𝜎𝑥

2𝛿𝑖𝑘 . 

In the above, 𝜎𝑥 and 𝑇𝑥 are the specifiable (predictive) standard deviation (one-sigma) and temporal 

correlation time constant for the stochastic process 𝑥𝑖, respectively, 𝐸{} the expected value operator, 

𝛿𝑖𝑘  the kronecker delta, and 𝜔𝑘 Gaussian white noise with a corresponding standard deviation that is a 

function of  𝜎𝑥 and 𝑇𝑥. 

Generalizing to three components contained in the multi-variate stochastic process 𝑋𝑖, assuming 

“steady-state” operations, and a discrete-time system: 

𝜖𝑋𝑖+ = Φϵ𝑋𝑖 + W𝑖  , 𝑤ℎ𝑒𝑟𝑒  Φ = [

𝑎𝑥 0 0
0 𝑎𝑦 0

0 0 𝑎𝑧

]  , 𝐸{𝜖𝑋𝑖𝜖𝑋𝑖
𝑇} = 𝐶𝑋𝑖 = [

𝜎𝑥
2 0 0

0 𝜎𝑦
2 0

0 0 𝜎𝑧
2

]        (5.7.1.1-2) 

𝐸{𝜖𝑋𝑚𝜖𝑋𝑛
𝑇} = 𝐶𝑋𝑖𝑘 = Φ|𝑖−𝑘|𝐶𝑋𝑖 , and 

𝐸{W𝑖W𝑖
𝑇} = [

(1 − 𝑎𝑥
2) 0 0

0 (1 − 𝑎𝑦
2) 0

0 0 (1 − 𝑎𝑧
2)

] 𝐶𝑋𝑖𝛿𝑖𝑘  ≡ 𝑄𝛿𝑖𝑘. 
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Thus, assuming that 𝑎 = 𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 for simplicity (not required), the above is implemented as an 

underlying error model for predictive statistics via the spdcf method by equating: 

𝐶𝑋𝑖 = [

𝜎𝑥
2 0 0

0 𝜎𝑦
2 0

0 0 𝜎𝑧
2

] for all 𝑖, and spdcf 𝜌(𝛿𝑡𝑖𝑘) = 𝑎|𝑖−𝑘| = 𝑒−Δ𝑡|𝑖−𝑘|/𝑇.                   (5.7.1.1-3) 

Therefore, via Equation (5.7.1-1): 

𝐶𝑋𝑖𝑘 = 𝜌(𝛿𝑡𝑖𝑘) ∙ 𝐶
𝑋𝑖

1

2 𝐶𝑋𝑘

1

2 = 𝑒−
Δ𝑡|𝑖−𝑘|

𝑇 [

𝜎𝑥 0 0
0 𝜎𝑦 0

0 0 𝜎𝑧

] [

𝜎𝑥 0 0
0 𝜎𝑦 0

0 0 𝜎𝑧

] = Φ|𝑖−𝑘|𝐶𝑋𝑖,          (5.7.1.1-4)  

i.e., consistent with the underlying error model as specified by Equation (5.7.1.1-2).  Of course, prior to 

implementation and as part of the a priori modeling task, the values for the standard deviations 

𝜎𝑥, 𝜎𝑦, 𝜎𝑧 and the value for the time constant 𝑇 must be specified. 

Figure 5.7.1.1-1 (left) presents a simulation of one realization of x-component error based on 

implementation of Equation (5.7.1.1-1) (or one component of Equation (5.7.1.1-2)), assuming 𝜎𝑥 = 1 

meter and time-constant 𝑇 = 240 seconds.  Figure 5.7.1.1-1 (right) presents the corresponding 

deterministic spdcf, a decaying or damped exponential. 

 

Figure 5.7.1.1-1: Gauss-Markov first order process example:  

realization (left) and corresponding spdcf 

References for Gauss-Markov stochastic processes include [20], [15], and [11], and for Gauss-Markov 

random fields [27], [17], and [19].   

The last reference details first-order Gauss-Markov sequential generation equations for 1D, 2D, 3D, and 

4D (e.g., 3D spatial and 1D time) random fields, with Figure 5.7.1.1.-2 an example corresponding to a 2D 

scalar random field (the explicit error notation 𝜖 dropped from 𝜖𝑧 for convenience.) 
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Figure 5.7.1.1-2: Sequential generation of a 2D scalar random field  

The (steady state) homogeneous random field corresponds to a scalar 𝑧𝑘,𝑙  at horizontal grid location 𝑘 

and 𝑙.  The standard deviation of 𝑧𝑘,𝑙 is specifiable as 𝜎𝑧 and the spdcf specifiable as 𝜌(∆𝑘, ∆𝑙) =

𝑟𝑥
∆𝑙𝑟𝑦

∆𝑘 = 𝑒−∆𝑙𝛿𝑥/𝑇𝑥𝑒−∆𝑘𝛿𝑦/𝑇𝑦, where ∆𝑙 and ∆𝑘 are the number of grid units between two locations, 𝛿𝑥  

and 𝛿𝑦 are meters/grid unit in the two directions, and 𝑇𝑥 and 𝑇𝑦 specifiable distance constants for the 

two spatial directions.   

Thus, assuming a 2d to 1d index ordering function 𝑖 = 𝑜(𝑙, 𝑘) that maps grid location to individual state 

vector location within the multi-state vector, we have the following predictive statistics compatible with 

the spdcf method: 

𝜖𝑋𝑖 ≡ 𝑧𝑘,𝑙,                          (5.7.1.1-5) 

 𝐶𝑋𝑖 = 𝜎𝑧
2, spdcf 𝜌(𝛿𝑑𝑖𝑗) = 𝑒−∆𝑙𝑖𝑗𝛿𝑥/𝑇𝑥𝑒−∆𝑘𝑖𝑗𝛿𝑦/𝑇𝑦, and     

𝐶𝑋𝑖𝑗 = 𝜌(𝛿𝑑𝑖𝑗)𝜎𝑧𝜎𝑧 = 𝜌(𝛿𝑑𝑖𝑗)𝜎𝑧
2, where 𝛿𝑑𝑖𝑗  is the 2d spatial separation between 𝜖𝑋𝑖 and 𝜖𝑋𝑗. 

5.7.1.2 Use of sample statistics 

Empirical information used to model errors and their predictive statistics can include that derived from 

tests using sample statistics of measured errors relative to available “ground truth” or fiducial 

information.  The type of “ground truth” is dependent on the approach available.  For example, in the 

“direct approach”: “true” state vector values are from an independent source and directly correspond to 

the actual state vectors of interest.  In the “indirect approach”: “true” 3d ground coordinates of points 

are from an independent source and are related to corresponding estimates of their locations that can 

be generated from the actual state vectors of interest.   

In general, the “direct approach” is simpler, more straightforward, and yields better results.  The 

“indirect approach” requires a “reverse mapping” of ground coordinate errors to the actual errors of 

interest, and is typically iterative in nature.  In both approaches, enough samples must be available for 

reasonable statistical significance.  Predictive statistics of “truth” errors should also be available and 

taken into account regarding the degree-of fidelity of the derived predictive statistics of interest.  Thus, 



NGA.SIG.0026.03_1.0_ACCPRED 
 

 
76 

in the indirect approach, for example, if the actual state vectors of interest only contribute to 

approximately one meter of derived ground point error, “ground truth” errors need to be on the order 

of ten centimeters or less, not meters.   

In addition, since state vectors of interest are multi-state vectors in general, and can correspond to 

stochastic processes and random fields, estimates of appropriate spdcf are also required.  There is a 

reasonable amount of research regarding estimation of spdcf (aka variograms, correlogram) in the field 

of Geostatistics, with references [4], [2], and [30] applicable.  For image-based geopositioning, the 

temporal correlation of a stochastic process corresponding to sensor support data errors affects the 

horizontal and vertical accuracy of derived ground point locations differently, which can be taken 

advantage of when estimating the spdcf [11]. 

In general, the appropriate use of sample-statistics in modeling predictive statistics requires further 

research, particularly for the indirect approach discussed above.   Sample statistics and their relationship 

to predictive statistics are discussed further in TGD 2b (Sample Statistics). 

5.7.2 Batch WLS 

The following equation presents the general form for the WLS batch estimate of the multi-state vector 𝑋 

and its multi-state vector error covariance matrix 𝐶𝑋, given measurements 𝑀 with corresponding 

measurement error covariance matrix Σ𝑀.  If the dimension of 𝑋 is 𝑛, the dimension of 𝐶𝑋 is 𝑛𝑥𝑛.  The 

(post-estimate) 𝑋 and 𝐶𝑋 are computed automatically by the estimator, assuming it is set-up properly 

(e.g., sufficient observability):   

𝑋 = 𝐶𝑋𝐵𝑇𝑊𝑀, where 𝐶𝑋 = (𝐵𝑇𝑊𝐵)− , 𝑊 = Σ𝑀
− , and 𝐵 =

𝜕𝑀

𝜕𝑋
.               (5.7.2-1) 

Furthermore, assuming 𝑋 = [𝑋 
𝑇 . . 𝑋𝑚

𝑇 ]𝑇, each 𝑋𝑖  of dimension 𝑛𝑖𝑥1, then 𝑛 = ∑ 𝑛𝑖
𝑚
𝑖  .  If 𝐶𝑋𝑖 is the 

𝑛𝑖𝑥𝑛𝑖 error covariance for 𝑋𝑖, then 𝐶𝑋 = 𝐸{𝜖𝑋𝜖𝑋𝑇} = [

𝐶𝑋 𝐶𝑋 2

. 𝐶𝑋2

. . 𝐶𝑋 𝑚

. . 𝐶𝑋2𝑚
. .
. .

. . . .
. 𝐶𝑋𝑚

], the 𝑛𝑥𝑛 error 

covariance matrix for 𝑋.                                  (5.7.2-2) 

It is required that 𝐶𝑋 is symmetric and positive definite, which implies that all of the 𝐶𝑋𝑖 are symmetric 

and positive definite, as well.  These required conditions on 𝐶𝑋 are guaranteed automatically for a well-

formulated WLS solution.  Note that the internal structure of the cross-covariance matrices 𝐶𝑋𝑖𝑘 can be 

somewhat complicated, not necessary of the relatively simple form 𝐶𝑋𝑖𝑘 = 𝜌(𝛿𝑡𝑖𝑗) ∙ 𝐶𝑋𝑖
 /2

𝐶𝑋𝑘
 /2

, typically 

used in a priori modeling.  Their corresponding inter-state vector correlations, and possibly intra-state 

vector correlations, are usually large (absolute value of correlation coefficients near 1) due to the 

estimator’s use of a common set of measurements 𝑀 for the simultaneous solutions for the various 𝑋𝑖, 

i.e., 𝑋.  (Note: the dimension and the identities of the components which make up  𝑋𝑖  and 𝑋𝑘 need not 

be the same for batch WLS.) 
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5.7.3 Kalman filter or smoother 

A standard Kalman filter computes and sequentially outputs a time series of state vectors (estimates) 

and corresponding error covariance matrices: 𝑋 , 𝐶𝑋 , 𝑋2, 𝐶𝑋2, .. , 𝑋𝑖, 𝐶𝑋𝑖, .. , 𝑋𝑚, 𝐶𝑋𝑚.   

This is not enough to assemble 𝐶𝑋, i.e., the cross-covariance matrices 𝐶𝑋𝑖𝑘 are not included.  However, 

reference [12] presents a rigorous solution.  It recommends that the Kalman Filter also compute the “A 

matrix” at each time or “update” stage, i.e., augment the output  𝑋𝑖, 𝐶𝑋𝑖 at time step 𝑖 to 𝑋𝑖, 𝐶𝑋𝑖, 𝐴𝑖
𝑖+ .  

The latter “A matrix” can be easily computed by the Kalman Filter and is the same dimension as 𝐶𝑋𝑖 .   

This process is outlined in Figure 5.7.3-1.  Note that the matrices used to generate 𝐴𝑖
𝑖+  are the standard 

matrices available internally to the Kalman Filter at each update stage 𝑘: the gain matrix (𝐺),the  partial 

derivatives of the measurements with respect to the state (𝐻), and the state transition matrix (Φ). 

 

Figure 5.7.3-1: Augmentation of the standard Kalman Filter output with  

the “A matrix” - required for “down-stream” cross-covariance generation 

Given the augmented Kalman Filter output for a time series 𝑖 = 1, . . , 𝑚, the 𝑚 different “A matrices” 

can be used to rigorously (no approximation) assemble any of the possible (
𝑚
2
) number of  𝐶𝑋𝑖𝑘.  For 

example, if 𝑚 = 5000, any of the possible ≅ 12,500,000 different 𝐶𝑋𝑖𝑘. This is possible due to the 

transitive property of the “A matrix” as summarized in Figure 5.7.3-1.   

See reference [12] for more details regarding the “A matrix”, including derivation of all of its properties.  

Reference [1] derives similar results for a smoother’s “S matrix”.  In addition, reference [16] extends the 

Kalman Filter results of [12] to include two new features: 

 The Kalman filter state (membership) definition can be dynamic, i.e., old components removed 

and new ones added throughout the time-sequence 
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 “A matrix” processing can be tailored to computation of the error cross-covariance matrix for a 

subset of state components that are (only) of interest to “down-stream” applications, which can 

result in large savings in band-width 

5.7.3.1 Kalman filter example using the “A matrix” required for cross-covariance 

Reference [12] also includes a realistic simulated example of the significant inter-state vector correlation 

produced by a Kalman Filter (KF), and its impact on a “down-stream” application that estimates 3d 

ground point locations using the KF-registered image frames (support data) associated with a subset of 

ten thousand full-motion video frames taken at a 10 hertz rate.  KF registration solves for corrections to 

the support data in real-time. 

More specifically, this “down-stream” application solves for the 3d location of a ground point via a WLS 

estimator using the pixel location of the ground point measured in two of the registered frames which 

are separated in time (frames) for adequate solution geometry.  The measurements of the ground point 

in the registered frames have two primary sources of error: (1) errors in the explicit measurement of the 

ground point’s pixel location in each of the two frames, and (2) errors in the previous frame registration 

(support data) projected to image space for each of the two frames.  The latter errors are due to KF 

solution errors, are dominant, and contain significant inter-state vector correlation.  And in order for the 

WLS application to compute the corresponding multi-state vector error covariance matrix for its input 

measurements, the corresponding multi-state vector error covariance matrix for the KF solution must be 

available and used. 

The following figures correspond to the above example and present the auto correlation coefficients for 

KF solution errors for support data attitude (orientation) corrections omega, phi, kappa (Figure 5.7.3.1-

1) at frame 7550 with all subsequent frames, and the cross-correlation coefficients for attitude 

corrections with sensor x-component position corrections at frame 7550 with all subsequent frames 

(Figure 5.7.3.1-2), i.e., auto-correlation functions and cross-correlation functions, respectively.  These 

correlation coefficients were computed from the 𝐶𝑋𝑖 output by the KF and the 𝐶𝑋𝑖𝑘 computed from the 

𝐴𝑖
𝑖+ output by the KF.  Only the “A matrix” method can rigorously capture the variability of these inter-

event correlations, and thus, support optimal WLS “down-stream” 3d ground point estimation. 

(Note that the significantly negative-valued cross-correlation function presented in Figure 5.7.3.1-2 can 

be considered due to negative-valued intra-state vector correlation “damped” by positive-valued inter-

state vector correlation that decreases in value with increasing time between Kalman Filter state vector 

updates.) 



1 
 

 

Figure 5.7.3.1-1: KF auto-correlation functions 

 

Figure 5.7.3.1-2: KF cross-correlation functions 

 

5.8 Generic Methods for Representation/Dissemination of the Multi-State 

Vector Error Covariance Matrix 
There are three generic methods for the representation and dissemination of the multi-state vector 

error covariance matrix 𝐶𝑋 to “down-stream” applications: (1) direct, (2) “A matrix”, and (3) spdcf.   

Note that the dissemination of 𝑋 itself is not included in the descriptions below for convenience.  Also, 

as seen below, the assembly example for each method involves only three of the 𝑚 individual state 

vectors 𝑋𝑖:  i = 1, 3, and 5 for specificity.  (The appropriate subset of 𝐶𝑋 is also symmetric and positive 

definite, i.e. valid.) This not only serves for convenience of description, but is typical operationally.  For 

example, if 𝐶𝑋 corresponds to the solution for adjusted image support data in an image bundle 

adjustment of 𝑚 = 200 images over a large area of interest, there are typically multiple downstream 

applications that use different subsets of these adjusted (registered) images in order to accurately 

extract ground points over their smaller area of interest.  However, the bundle adjustment must output 

the entire 𝐶𝑋 in order to serve all of the applications. 

5.8.1 Direct method 

Disseminate: 𝐶𝑋 , 𝐶𝑋 2, 𝐶𝑋 3, .. , 𝐶𝑋 𝑚,   𝐶𝑋2, 𝐶𝑋23, 𝐶𝑋24, .. , 𝐶𝑋2𝑚, .. ,  𝐶𝑋𝑚.             (5.8.1-1) 

Assembly example for three individual state vectors 𝑖 = 1,3,5: 𝐶𝑋 =  

𝐶𝑋 𝐶𝑋 3 𝐶𝑋 5

. 𝐶𝑋3 𝐶𝑋35

. . 𝐶𝑋5

 .          (5.8.1-2) 

The direct method is compatible with WLS generation of 𝐶𝑋.  (In addition, the dimension and the 

identities of the components which make up the corresponding  𝑋𝑖  and 𝑋𝑘 need not be the same for the 

direct method.) 
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5.8.2  “A matrix” method 

Disseminate: 𝐶𝑋 , 𝐴 
2, 𝐶𝑋2, 𝐴2

3, .. , 𝐶𝑋𝑚− , 𝐴𝑚− 
𝑚  , 𝐶𝑋𝑚, 𝐴𝑚

𝑚+ .               (5.8.2-1) 

Assembly example for three individual state vectors 𝑖 = 1,3,5: 

 𝐶𝑋 = [

𝐶𝑋 𝐶𝑋 (𝐴2
3𝐴 

2)𝑇 𝐶𝑋 (𝐴4
5𝐴3

4𝐴2
3𝐴 

2)
𝑇

. 𝐶𝑋3 𝐶𝑋3(𝐴4
5𝐴3

4)
𝑇

. . 𝐶𝑋5

].                 (5.8.2-2) 

The “A matrix” method is compatible with Kalman Filter (or smoother, with some modifications) 

generation of 𝐶𝑋, as discussed in Section 5.7.3. 

 

5.8.3 Spdcf method 

Disseminate: 𝐶𝑋 , 𝐶𝑋2, .. , 𝐶𝑋𝑚; and a few parameters defining the scalar-valued spdcf 𝜌(𝛿𝑡), where 𝛿𝑡 

can correspond to delta time or delta space, and can be a scalar or multi-dimensional.   (𝛿𝑡𝑖𝑘  is the delta 

time or delta distance between applicabilities of individual state vectors, or events,  𝑖 and 𝑘). 

Assembly example for three individual state vectors 𝑖 = 1,3,5: 

  𝐶𝑋 =

[
 
 
 𝐶𝑋 𝜌(𝛿𝑡 3) ∙ (𝐶𝑋 

 /2
) (𝐶𝑋3

 /2
) 𝜌(𝛿𝑡 5) ∙ (𝐶𝑋 

 /2
) (𝐶𝑋5

 /2
)

. 𝐶𝑋3 𝜌(𝛿𝑡35) ∙ (𝐶𝑋3
 /2

) (𝐶𝑋5
 /2

)

. . 𝐶𝑋5 ]
 
 
 

,               (5.8.3-1) 

where the superscript 1/2 indicates principal matrix square root.   

The above assembled 𝐶𝑋 is guaranteed valid as proven in [5] and demonstrated in [7] and [8]. 

Further note that, in general, if 𝐶𝑋𝑖 = 𝐶𝑋𝑘, then  (𝐶𝑋𝑖
 /2

) (𝐶𝑋𝑘
 /2

) = 𝐶𝑋𝑖.              (5.8.3-2) 

Also, if 𝐶𝑋𝑖 =

[
 
 
 
𝜎 𝑖

2 0

0 𝜎2𝑖

2
. . 0
. . 0

. . . .
0 0

. . . .

. . 𝜎𝑛𝑖
2
]
 
 
 
 and 𝐶𝑋𝑘 =

[
 
 
 
𝜎 𝑘

2 0

0 𝜎2𝑘

2
. . 0
. . 0

. . . .
0 0

. . . .

. . 𝜎𝑛𝑘
2

]
 
 
 
, then              (5.8.3-3) 

𝐶𝑋𝑖𝑘 = 𝜌(𝛿𝑡𝑖𝑘) [

𝜎 𝑖
𝜎 𝑘

0

0 𝜎2𝑖
𝜎2𝑘

. . 0

. . 0
. . . .
0    0     

. . . .

. . 𝜎𝑛𝑖
𝜎𝑛𝑘

] = [

𝜌(𝛿𝑡𝑖𝑘)𝜎 𝑖
𝜎 𝑘

0

0 𝜌(𝛿𝑡𝑖𝑘)𝜎2𝑖
𝜎2𝑘

. . 0

. . 0
. .                        . .
0            0

. . . .

. . 𝜌(𝛿𝑡𝑖𝑘)𝜎𝑛𝑖
𝜎𝑛𝑘

]. 

     

The spdcf method is compatible with the a priori modeling method for the generation of 𝐶𝑋 (see Section 

5.7.1).  The specific spdcf is selected based on desired correlation characteristics (see Section 5.8.3.2).   
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There are no “approximation” errors associated with the spdcf method for representation and 

dissemination of the multi-variate error covariance matrix, other than those that may exist that directly 

correspond to the a priori modeling itself.  Also, it is not uncommon that all of the 𝐶𝑋𝑖 are modeled as 

diagonal matrices; hence, 𝐶𝑋𝑖𝑘 is also diagonal (see Equation (5.8.3-3)), making representation easy. 

Also, regarding a priori modeling, it is recommended that the following optional constraint be enforced 

for all relevant 𝑖, 𝑘 in Equation (5.8.3-1) to insure “realism”:    

 𝜌(𝛿𝑡𝑖𝑘) ≤ 𝑠𝑞𝑟𝑡(𝑡𝑟𝑎𝑐𝑒(𝐶𝑋𝑖)/𝑡𝑟𝑎𝑐𝑒(𝐶𝑋𝑘)), if 𝑡𝑟𝑎𝑐𝑒(𝐶𝑋𝑘) > 𝑡𝑟𝑎𝑐𝑒(𝐶𝑋𝑖), 

𝜌(𝛿𝑡𝑖𝑘) ≤ 𝑠𝑞𝑟𝑡(𝑡𝑟𝑎𝑐𝑒(𝐶𝑋𝑘)/𝑡𝑟𝑎𝑐𝑒(𝐶𝑋𝑖)), if 𝑡𝑟𝑎𝑐𝑒(𝐶𝑋𝑘) ≤ 𝑡𝑟𝑎𝑐𝑒(𝐶𝑋𝑖),   

where 𝑡𝑟𝑎𝑐𝑒( ) is the sum of the diagonal elements of the enclosed matrix.              (5.8.3-4) 

This is done, if need be, by selection of the specific spdcf and/or (minimal) scaling of the desired 𝐶𝑋𝑖 via 

𝐶𝑋𝑖 → 𝑠 ∙ 𝐶𝑋𝑖, 𝑠 > 0.  Although the multi-state vector error covariance matrix 𝐶𝑋 is theoretically valid 

without the constraint satisfied, the constraint insures an underlying error process that is statistically 

consistent with most real-world processes.  For example, if inter-event correlation is positive and 

reasonably high between two events, such as 0.8, their expected magnitude of error should be within 

20% of each other.  Finally, of course, the constraint is only applicable when the desired 𝐶𝑋𝑖 vary over 

𝑖 = 1, . . , 𝑚.  See [10] for more details on this constraint and “real-world” processes. 

The spdcf method can also be used to approximate 𝐶𝑋 (actually the various 𝐶𝑋𝑖𝑘) generated by either a 

WLS , Kalman Filter, or some other estimator in order to minimize its size (bandwidth) for dissemination.  

That is, a suitable spdcf may be fit, subject to the optional constraint (Equation (5.8.3-4)), to the inter-

event correlation implied by 𝐶𝑋 prior to dissemination.  If used to approximate the results of a KF, the 

spdcf is typically a function of delta time.  If used to approximate the results of a WLS that solves for 

ground point locations (and possibly image support data adjustments), the spdcf is typically a function of 

spatial distance.  Once the spdcf is generated, 𝐶𝑋 is assembled as in Equation (5.8.3-1).  The resultant 

diagonal blocks 𝐶𝑋𝑖 are exact; however, the fidelity of the resultant cross-blocks 𝐶𝑋𝑖𝑘 is application-

dependent (additional research is needed to quantify fidelity versus specific applications).  Section 5.9.1 

presents a specific example. 

5.8.3.1 Correlation subgroups 

The above description of the spdcf method assumed one spdcf applicable to all error components which 

are common to all individual state vectors.  Thus, assuming all individual state vector errors 𝜖𝑋𝑖 were 

𝑛𝑥1, the 𝑛𝑥𝑛 block-diagonal 𝑖 (full, in general) of the multi-state vector error covariance matrix 𝐶𝑋 was 

equal to 𝐶𝑋𝑖, and the 𝑛𝑥𝑛 cross-block 𝑖-𝑗 (full, in general) was equal to 𝜌(𝛿𝑡𝑖𝑗) ∙ (𝐶𝑋𝑖
 /2

) (𝐶𝑋𝑗
 /2

), where 

the scalar correlation value 𝜌(𝛿𝑡𝑖𝑗) multiplied each element of the 𝑛𝑥𝑛 matrix ((𝐶𝑋𝑖
 /2

) (𝐶𝑋𝑗
 /2

)). 

The above can be generalized to the use of multiple spdcf, one per “correlation subgroup”.  The  𝐶𝑋 

above had one correlation subgroup that contained all 𝑛𝑥1 error components, and thus, all intra-state 

vector correlations and inter-state vector correlations were allowed, i.e., both 𝐶𝑋𝑖 and 𝐶𝑋𝑖𝑗 were full.  
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However, multiple correlation subgroups can be defined instead, each corresponding to a subset of the 

𝑛 error components, such that the total number of error components sums to 𝑛. 

If subgroup 𝑘 has 𝑛𝑘 elements, it corresponds to an 𝑛𝑘𝑥𝑛𝑘 block-diagonal (full, in general, and 

symmetric) in 𝐶𝑋𝑖 and an 𝑛𝑘𝑥𝑛𝑘 cross-block (full, in general, not symmetric) in cross-block 𝐶𝑋𝑖𝑗.  The 

elements in two different correlation subgroups are assumed uncorrelated.  This is illustrated in Figure 

5.8.3.1-1, which assumes three individual state vectors and two correlation subgroups.  The colors blue 

and light blue correspond to blocks and cross-blocks, respectively, for correlation subgroup 1.  The 

colors green and light green correspond to blocks and cross-blocks, respectively, for correlation 

subgroup 2.  The color white indicates no correlation, i.e., cross-blocks of zeros.  The color gray indicates 

error covariance matrix symmetry (intra-block-diagonal symmetry not shown). 

 

Figure 5.8.3.1-1: Color-coded assembled multi-state vector error covariance matrix  

corresponding to three individual state vectors and two correlation subgroups 

Thus, when defining correlation subgroups there is always a trade-off: freedom to select a different 

spdcf per subgroup, but all subgroups must be modelled as uncorrelated with each other.  Together, 

these two attributes insure a valid assembled multi-state vector error covariance matrix. 

The above illustrated flexibility and generality using the spdcf method.  However, many applications are 

very straightforward.  For example, GPS receiver errors for a typical GPS receiver on a UAV [16] may be 

reasonably modeled as a first-order Gauss-Markov stochastic process (spdcf is a damped exponential) in 

a local tangent plane system (ENU) as follows using one correlation subgroup: 

𝐶𝑋𝑖 =  
22 0 0
0 22 0
0 0 22

  meters-squared, for all 𝑖,              (5.8.3.1-1) 

 and 𝐶𝑋𝑖𝑗 = 𝑒−|𝑡𝑖−𝑡𝑗|/300  
22 0 0
0 22 0
0 0 22

 = [
𝑒−|𝑡𝑖−𝑡𝑗|/30022 0 0

0 𝑒−|𝑡𝑖−𝑡𝑗|/30022 0

0 0 𝑒−|𝑡𝑖−𝑡𝑗|/30022

](5.8.3.1-2) 

meters-squared for all 𝑖, 𝑗, and time in seconds. 

5.8.3.2 Spdcf properties and examples 

Strictly positive definite correlation functions (spdcfs) and their applications for the generation of 𝐶𝑋 

were described earlier.  They provide a practical method to specify inter-state vector correlations, and 
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the computation of the cross-covariance matrix  𝐶𝑋𝑖𝑘 using the spdcf and matrix square roots as 

indicated in Sections 5.8.3 and 5.8.3.1.  The use of spdcfs insures that the resultant 𝐶𝑋 is a valid error 

covariance matrix for an arbitrary number of individual state vectors (aka “events”).  This is not true for 

other candidate correlation functions, even though they may seem reasonable, i.e., even if their 

evaluation satisfies the minimal requirements that  𝜌(𝛿𝑡 = 0) = 1 and −1 < 𝜌(𝛿𝑡 ≠ 0) < 1.   

An spdcf that is a function of delta time typically corresponds to a multi-variate stochastic process; such 

as a time series of individual state vectors (e.g., image support data) with errors 휀𝑋𝑖.  An spdcf that is a 

function of spatial distance typically corresponds to a multi-variate random field; for example, a spatial 

location series of individual state vectors (ground points) with errors 휀𝑋𝑖.  (Of course, there can actually 

be multiple spdcfs, one per correlation subgroup as described in Section 5.8.3.1.)   

There are many different families of spdcf, with a specific member of a family specified by the values of 

a few parameters.  Figure 5.8.3.2-1 illustrates members from four different spdcf families: damped 

exponential, damped cosine, piece-wise linear convex with a non-negative floor, and second order 

Gauss-Markov.  In addition, any convex sum of an arbitrary number of members from an arbitrary 

number of spdcf families is an spdcf as well.  An a priori modeling application must select the 

appropriate family and then specify an appropriate member of that family which reflects the desired 

correlation characteristics. 

 

Figure 5.8.3.2-1: Examples of spdcf families 
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Another spdcf family is the “CSM four parameter” family.  (See [18] for more details regarding this spdcf 

family as well as the Community Sensor Model or CSM.)  It is very general, with a specific member 

specified by the values of four parameters: 𝐴, 𝛼 (“alpha”), 𝛽(“beta”), and 𝑇. All of these parameters are 

unit-less except 𝑇, which has the same units as the independent variable 𝜏 (or 𝛿𝑡).  A specific spdcf 

member is defined as follows: 

𝜌(𝜏) = 𝐴  𝛼 +
( −𝛼)( +𝛽)

𝛽+𝑒𝜏/𝑇  , where               (5.8.3.2-1)  

0 < 𝐴 ≤ 1; 0 ≤ 𝛼 < 1; 0 < 𝑇; 0 ≤ 𝛽 ≤ 10. 

Note that the symbol 𝐷 sometimes replaces the symbol 𝑇 when dealing with spatial correlation instead 

of temporal correlation. 

In addition, 𝜌(𝜏 = 0) ≡ 1, 𝜌(𝜏 = +𝑒𝑝𝑠𝑖𝑙𝑜𝑛) = 𝐴, where epsilon is a very small positive number, and 

𝜌(𝜏 → +∞) = 𝐴𝛼.  Note that 𝐴 < 1 can be considered as corresponding to the inclusion of an 

uncorrelated random error component, and that 0 < 𝛼 can be considered as corresponding to the 

inclusion of a random bias error component.  Also, the member {1,0,0,𝑇} corresponds to the familiar 

damped exponential  𝑒−𝜏/𝑇.   

Figure 5.8.3.2-2 presents examples of specific members from this family (the units of 𝜏 in these 

examples are seconds) with corresponding parameter values: {1,0,0,100} (blue), {1,0,10,50} (green), 

{1,0.5,0,100} (red), and {0.5,0,0,100} (teal). 

 

A) Figure 5.8.3.2-2: Specific members of the 

“CSM four parameter”family

Figure 5.8.3.2-3: Example of a separable 

spdcf  

The spdcf’s independent variable 𝜏 can be a scalar, such as the absolute value of delta time, or multi-

dimensional, such as horizontal two-dimensional distance between two 3d ground points.  If the latter, 

the spdcf can also be separable, e.g., have the form 𝜌(𝜏 , 𝜏2) = 𝜌(𝛿𝑥, 𝛿𝑦) = 𝜌𝑥(𝛿𝑥) ∙ 𝜌𝑦(𝛿𝑦).  Figure 

5.8.3.2-3 presents an example of 𝜌(𝛿𝑥, 𝛿𝑦), where each of its composite functions 𝜌𝑥(𝛿𝑥) and 𝜌𝑦(𝛿𝑦) 

are members of the CSM four parameter family.  Note the different correlation characteristics in the x 
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and the y directions.  Thus, for example, the multi-state vector error covariance matrix for a field of 𝑚 

3d ground control points could be represented by 𝑚 unique (or the same-valued, if applicable) 3𝑥3 𝐶𝑋𝑖 , 

and eight parameters specifying the two composite functions.  That is, using this data, 𝐶𝑋 could be 

assembled as follows by a down-stream application in order to properly weight the control: 

𝐶𝑋 =

[
 
 
 𝐶𝑋 𝜌𝑥(𝛿𝑥 2) ∙ 𝜌𝑦(𝛿𝑦 2) ∙ 𝐶𝑋 

 /2
𝐶𝑋2

 /2

. 𝐶𝑋2

. . 𝜌𝑥(𝛿𝑥 𝑚) ∙ 𝜌𝑦(𝛿𝑦 𝑚) ∙ 𝐶𝑋 
 /2

𝐶𝑋𝑚
 /2

. . 𝜌𝑥(𝛿𝑥2𝑚) ∙ 𝜌𝑦(𝛿𝑦2𝑚) ∙ 𝐶𝑋2
 /2

𝐶𝑋𝑚
 /2

. .

. .

. . . .
. 𝐶𝑋𝑚 ]

 
 
 

.        (5.8.3.2-2) 

In general, a separable spdcf can be a product of up to 𝑛 individual spdcf when distances are expressed 

in an n-dimensional metric space, such as the Cartesian Coordinate System 𝑅𝑛.  In addition, this 

coordinate system need not correspond to the coordinate system in which the individual errors 𝜖𝑋𝑖 are 

expressed.   Thus, for example, if the 𝜖𝑋𝑖 correspond to errors in 3d ground locations expressed in a 

local tangent plane system, spdcf distances can be with respect to a rotated tangent plane. 

5.8.4 Bandwidth 

The following Table 5.8.4-1 summarizes the amount of data or “bandwidth” needed to disseminate the 

multi-state vector error covariance matrix for the three methods: direct, “A matrix”, and spdcf.  All of 

these methods explicitly disseminate the (upper triangular portion) of the individual 𝑛𝑥𝑛 𝐶𝑋𝑖 for all 

individual state vectors (aka “events”) of interest.  The direct method also explicitly disseminates all of 

the individual 𝑛𝑥𝑛 cross-covariance matrices 𝐶𝑋𝑖𝑘 for all individual state vectors of interest, whereas the 

other two methods disseminate much less data for 𝐶𝑋𝑖𝑘  down-stream assembly.  The “A matrix” 

method requires more data than does the spdcf method, but its assembly of the 𝐶𝑋𝑖𝑘 is rigorous (exact) 

and not an application-dependent approximation as for the spdcf method.  Regardless, for a large 

number of individual state vectors 𝑚, both the “A matrix” and spdcf methods are practical, whereas the 

direct method may not be.  Both of these methods are relatively new and hopefully will facilitate the use 

of the multi-state vector error covariance matrix 𝐶𝑋 by various applications. 

Table 5.8.4-1: Bandwidth requirements vs. dissemination method 

 

As a specific example of the bandwidth needed for the various methods, Table 5.8.4-1 requirements 

were converted from (data per event, assuming 𝑚 event) to (total data required, summed over all 𝑚 

events), as a function of number of events 𝑚 and presented in Figure 5.8.4-1.  The dimension 𝑛 was 

assumed equal to 3 for specificity, and could correspond to individual state vectors 𝑋𝑖  that correspond 

Method

average # multi-event cov data 

elements per event for m events

# events Rigorous # event pairs Rigorous

Direct All Yes bandwidth limited Yes (n)(n+1)/2 + (m)(n)(n)

A matrix All Yes Unlimited Yes (n)(n+1)/2 + (n)(n)

Spdcf All Yes Unlimited Approx (n)(n+1)/2

Single event cov Cross-cov
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to 3d ground point locations, for example.  (If the dimension 𝑛 is increased, the differences in bandwidth 

growth would be even more dramatic than currently illustrated in Figure 5.8.4-1.)   

In addition, a data element (error covariance element) was assumed to require 8 bytes.  (This latter 

assumption could be reduced if error covariance matrices were normalized, i.e., decomposed to the 

square-root of their diagonal elements along with all applicable correlation coefficients.). 

 

Figure 5.8.4-1: Bandwidth as a function of the number of individual state vectors or “events” for 

different methods to disseminate the (full) multi-state vector error covariance matrix 

 

5.9 Approximation of the Multi-State Vector Error Covariance Matrix 
In some applications, a low-bandwidth approximation of a large multi-state vector error covariance 

matrix may be desirable and feasible.  It may correspond to, for example, the solution error covariance 

matrix of a large batch WLS solution, which typically induces non-trivial intra-state vector correlation 

and inter-state vector correlation, i.e., a full matrix. 

The allowed fidelity (degree of realism – see Section 5.2.4) of the approximation is application-

dependent, but the approximation must yield a valid error covariance matrix.   

If the corresponding individual state vectors correspond to 3d location of features or ground points, and 

their collective “footprint” corresponds to a region across horizontal-space (e.g., earth-surface), such an 

approximation of the multi-state vector error covariance matrix may be preferred over a regional 

predictive CE/LE summary.  The latter consists of a collection of separate regions of CE and LE (average 

or typical) values, and regions of relative CE and relative LE values for point-pairs within regions and 

between regions.  Such a summary is not invalid as it stands, but if one were to reverse engineer an 
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approximation of the original multi-state vector error covariance matrix from it for use in valid-added 

processing, such a covariance matrix would be low fidelity: its general form would be a diagonal matrix 

for all covariance blocks and covariance cross-blocks, with entries corresponding to x-errors and y-errors 

equal.  More importantly, without proper attention given to the possible contradictory summaries over 

different regions, it could easily be invalid. 

A potential alternate approach for approximation of the original multi-state vector error covariance 

matrix is based on the spdcf method.  Assuming reasonable patterns of correlation between the errors 

between individual state vectors, results will be both higher fidelity than a predictive CE/LE summary 

and guaranteed a valid error covariance matrix.  The approximation will be low-bandwidth, and after its 

subsequent generation and dissemination, predictive CE/LE summaries can be generated from it in 

order to create a “stand-alone” product, if so desired.  Section 5.9.1 illustrates one variant of such an 

approximation and an overview of its computational procedure. 

5.9.1 Spdcf Method: approximation example 

A batch WLS adjustment was performed to correct or “register” 6 large stereo-pairs of WorldView-1 

imagery.  The adjustment solved for 9 sensor parameter corrections per image, consisting of 3 sensor 

position offset, 3 sensor attitude offset, and 3 sensor attitude rate corrections.  (These parameters 

affect the ground location to pixel location correspondence.)  In addition, 748 tie points were 

automatically measured between overlapping images (516 2-way tie points and 232 4-way tie points), 

and each of their corresponding 3d locations were solved for in the adjustment as well.  (The tie point 

image measurements provide “linkage” between the images as well as corresponding ground points.)   

Thus, the entire state vector for solution consisted of 108+2244=2352 elements.  In addition, the 

solution for the 748 tie points and their 2244x2244 portion of the 2352x2352 full solution (a posteriori) 

error covariance matrix were saved.  Default a priori error covariance matrices for the sensor 

parameters for adjustment were used per Digital Globe, including (non-diagonal) error cross-covariance 

matrices associated with the temporal correlation of sensor parameters for same-pass images 

generated based on an spdcf, and 0.5 pixel (one-sigma) a priori error covariance matrices were used for 

all (line,sample) image measurements, which were assumed uncorrelated between line and sample 

coordinates, as well as between measured points. 

 

The above (saved) solution is the 2244 x 1 multi-state vector of interest consisting of 748 individual (but 

correlated) 3x1 (tie point) state vectors, and the corresponding 2244x2244 multi-state vector error 

covariance matrix consisting of 3x3 block-diagonals for each tie point and 3x3 cross-blocks for each tie 

point pair.  These are of interest to internal or down-stream processing as “derived” ground control, 

along with their (full) error covariance matrix for appropriate weighting as well as characterization of 

(absolute and relative) predicted accuracy.   

 

Figure 5.9.1-1 presents corresponding (post-registration) predictive (absolute) CE and LE as they vary 

across the region, with the tie point footprints included.  These values were derived from the block-

diagonals of the multi-state vector error covariance matrix. 
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Figure 5.9.1-1: CE (left) and LE (right) for all tie points (2-way and 4-way) from batch registration 

solution’s multi-state vector error covariance matrix (plus overlay of 12 image footprints making up the 

6 stereo pairs) 

 

Furthermore, it was also desirable to approximate the multi-state vector error covariance matrix using 

the spdcf method, yielding an approximate 1:560 reduction in bandwidth.  Only the unique error 

covariance matrix elements per individual state vector need be saved, as well as a few parameters 

defining the spdcf(s) used.  (In reality, this is a relatively small example in terms of number of images 

and ground points for ease of illustration; thus, even larger bandwidth reductions are applicable in 

general.)  

 

The approximation process consisted of first transforming the multi-state vector error covariance matrix 

to an equivalent error covariance matrix but relative to a local tangent plane system centered at the 

middle of the footprints.  Two correlation subgroups were then identified, one corresponding to x-y 

horizontal location errors, and the other to vertical location errors.  Each correlation subgroup had its 

own spdcf: a separable spdcf consisting of the product of two spdcf of CSM four-parameter form, one a 

function of north-south distance (WorldView-1 scan direction in this example) and the other a function 

of east-west distance.   

 

(For an individual image prior to registration, spatial correlation of image location errors due to sensor 

support data errors is generally high in the scan direction and even higher in the cross-scan direction.  

However, following registration, and expressed as ground location errors relative to stereo-models, it is 

generally higher in the scan-direction, as the cross-scan direction crosses stereo models.) 

 

The spdcf were fit to the correlations of each point-pair computed using the original multi-state vector 

error covariance matrix, described as follows.   
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Each spdcf is specified by four parameters {𝐴,𝛼,𝑏𝑒𝑡𝑎,𝐷}.  A collection of correlation (coefficient) values 

was computed using all tie point-pairs and the original multi-state vector error covariance matrix.  There 

was a collection of x-x and y-y correlations used for correlation subgroup 1, and a separate collection of 

z-z correlations for correlation subgroup 2.  (Note that x-x correlation corresponds to the correlation 

coefficient of point i’s x error with point j’s x error, for instance.)  For a given correlation subgroup, the 

values of correlation corresponding to minimal distances dictated the 𝐴 (initial spdcf) values; those 

corresponding to very long distance dictated the 𝛼 (spdcf floor, as computed by the product of 𝐴 times 

𝛼) values, and the general shape of the correlation trend over the range of distances dictated the 𝑏𝑒𝑡𝑎 

(shape) value.  The subsequent distance constants 𝐷 were solved via a search technique to minimize the 

corresponding sum of fit residuals squared, holding the 𝐴, 𝛼, 𝑏𝑒𝑡𝑎 values fixed, and with initial 

approximations for the 𝐷 values.  (This technique can be augmented to include searching for a subset of 

the other three parameters, if so desired.)  Results are as follows: 

 

SPDCF Parameters XY: EW: A = 0.93 Alpha = 0.60 Beta = 0 D = 65,000 meters 

               NS: A = 0.93 Alpha = 0.35 Beta = 9 D = 65,000 meters 

 

SPDCF Parameters Z: EW: A = 0.93 Alpha = 0.60 Beta = 0 D = 30,000 meters 

            NS: A = 0.93 Alpha = 0.35 Beta = 9 D = 60,000 meters 

 

An example of spdcf fit results is shown next for the (composite) spdcf for correlation group 1 (x and y 

error), and specifically for x-x correlations versus E-W distance (Figure 5.9.1-2) and x-x correlations 

versus N-S distance (Figure 5.9.1-3).  Note that there are non-negligible fit residuals, not unexpected due 

to the use of both 2-way and 4-way tie points in the WLS batch registration solution, a relatively small 

number of images, and no external ground control (measured points with known 3d locations); thus, 

solution spatial correlation characteristics are not homogenous across the entire area (footprints), and 

sometimes concentrate in color-coded bands that correspond to the stereo models (footprints). 
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Figure 5.9.1-2: spdcf x-x fit results versus E-W distance 

 

 
Figure 5.9.1-3: spdcf x-x fit results versus N-S distance 

 

After generating the spdcfs, the corresponding approximate multi-state vector error covariance matrix 

was then assembled per Section 5.8 and tested for fidelity.  The test involved the predictive absolute CE 

(abs_CE) and predictive absolute LE (abs_LE) computed for each tie point, and the predictive relative CE 

(rel_CE) and the predictive relative LE (rel_LE) computed for each tie point pair, once using the 

assembled approximate error covariance matrix and once using the original error covariance matrix.  

(The units for absolute and relative CE and LE are meters; see Section 5.4 and Section 5.5.4 for 

predictive CE and LE computation details.) 
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The following presents predicted accuracy summary results graphically, essentially “approximation” 

versus “original”, where all applicable units are meters.  Only rel_CE and rel_LE results are shown, as the 

abs_CE and abs_LE results were identical between approximation and original, and thus consistent with 

Figure 5.9.1-1, as expected.   

 

 

 
 

Figure 5.9.1-4: rel_CE (left) and rel_LE (right) comparison results using two correlation subgroups; 

approximation versus original (blue) 

 

In Figure 5.9.1-4 (left), the x-axis corresponds to rel_CE computed using the original error covariance 

matrix for a tie point pair, and the corresponding y-axis value (blue dot) corresponds to rel_CE 

computed using the approximate error covariance matrix for the same tie point pair.  (Thus, a value 

intersecting the 45 degree black line is a perfect “match”; corresponding comparisons are also 

applicable to rel_LE in the figure on the right.)   

 

In general, the approximation does a reasonable job in the computation of rel_CE and rel_LE; hence, the 
approximate multi-state vector error covariance matrix does a reasonable job of capturing the original 
correlations.  And, of course, its corresponding individual 2x2 block-diagonals for x and y, and its 1x1 
block-diagonal for z are exact. 

(In general, predictive absolute CE and LE are larger than their predictive relative CE and LE 

counterparts, whether based on the original or approximate error covariance, due to the high 

correlation of 3d coordinate errors between tie point pairs, induced by the batch WLS registration 

process.) 
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Next, the same process described above was repeated, but using only one correlation subgroup, instead 
of two.  It consisted of (x,y,z) coordinate errors.  The approximate error covariance matrix will have 
exactly the same 3x3 error covariance block-diagonals for each individual state vector (tie point) as does 
the original error covariance matrix; thus, even more fidelity than the process using two correlation 
subgroups.  However, there will be some degradation in spdcf fitting in that all correlations (x-x,y-y,z-z) 
affect the one composite correlation function.  This may degrade somewhat the corresponding rel_CE 
and rel_LE values relative to the original values.   

Results are as follows:  The spatial correlation of one correlation subgroup (x,y,z) was approximately the 
same as that for two correlation subgroups described previously.  The defining spdcf parameters for one 
correlation subgroup were as follows:  

SPDCF Parameters XYZ: EW: A = 0.93 Alpha = 0.60 Beta = 0 D = 50,000 meters 

   NS: A = 0.93 Alpha = 0.35 Beta = 9 D = 65,000 meters 

In addition, corresponding rel_CE and rel_LE results were virtually identical to those of Figure 5.9.1-4 
presented earlier for two correlation subgroups – there was no degradation going from two correlation 
subgroups to one. 

Therefore, one correlation subgroup was selected.  Correspondingly, the spdcf method to approximate 
the multi-state vector error covariance matrix of interest yielded “perfect” predicted absolute accuracy 
results relative to the original multi-state error covariance matrix, and arguably “reasonable” predicted 
relative accuracy results (correlations) relative to the original multi-state vector error covariance matrix.  
And, of course, corresponding bandwidth was reduced and the assembled error covariance matrix valid.  
Also, the amount of band-width reduction and fidelity of predicted relative accuracy results should 
improve for other examples using a larger number of stereo models. 

The following puts the adjective “reasonable” for the above predicted relative accuracy results in 
perspective: The above one correlation subgroup experiment was repeated, but this time the 
approximate error covariance matrix had cross-covariance matrices set identically equal to zero, i.e., the 
spdcf was not used and the 3d location errors were simply assumed uncorrelated for convenience.  
Comparison of results for rel_CE and rel_LE are provided in Figure 5.9.1.5.  The blue dots correspond to 
the earlier results for one correlation subgroup (not explicitly shown, previously), and the red dots to 
the results when an spdcf was not used.  As can be seen in Figure 5.9.1.5, the spdcf is essential. 
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Figure 5.9.1-5: rel_CE (left) and rel_LE (right) comparison results using one correlation subgroup; 

approximation versus original (blue); no spdcf approximation versus original (red) 

 

Finally, the following presents a little more detail regarding the earlier experiment that used an spdcf 
and one correlation subgroup (Figure 5.9.1-5, blue) for more insight. Three (tie) points were identified, 
the first (“point 1”) in the East-most stereo block, the second (“point 2”) a few miles away, and the third 
(“point 3”) far away in the West-most stereo block (see Figure 5.9.1-1).  Table 5.9.1-1 details the 
corresponding original error covariance 3𝑥3 block-diagonals (covariance) for points 1, 2, and 3, and 
cross-blocks (cross covariance) between points 1-2 and 1-3.  It also details the corresponding block-
diagonals and cross-blocks from the approximate error covariance.  Note that with the spdcf method for 
approximation, the block-diagonals are identical to the original’s, and the cross-blocks reasonably close, 
where the approximation’s cross-bock is equal to the spdcf value, as a function of E-W and N-S distance 
between the point pair, times the product of the 3𝑥3 matrix square-roots of the corresponding block-
diagonals. 

Table 5.9.1-1: Detailed entries in the original multi-state vector error covariance matrix and its 
approximation corresponding to three tie point locations 

 

0.229309 -0.018282 -0.061085 0.236344 -0.019243 -0.061363 0.189307 -0.010358 -0.007122

-0.018282 0.263734 0.041796 -0.019243 0.275447 0.038539 -0.010309 0.220159 -0.025033

-0.061085 0.041796 1.231333 -0.061363 0.038539 1.258364 -0.007569 -0.024517 0.824708 SPDCF

0.229309 -0.018282 -0.061085 0.236344 -0.019243 -0.061363 0.202324 -0.016284 -0.053343 0.232799 -0.018737 -0.061378

-0.018282 0.263734 0.041796 -0.019243 0.275447 0.038539 -0.016317 0.234239 0.035539 -0.018775 0.269523 0.040892

-0.061085 0.041796 1.231333 -0.061363 0.038539 1.258364 -0.053081 0.034328 1.081818 -0.061077 0.039499 1.244771

0.229309 -0.018282 -0.061085 0.310256 -0.038443 0.185617 0.103921 0.001154 -0.006354

-0.018282 0.263734 0.041796 -0.038443 0.295410 -0.145693 0.006575 0.107450 0.022589

-0.061085 0.041796 1.231333 0.185617 -0.145693 1.518881 0.058934 0.007636 0.516280

0.229309 -0.018282 -0.061085 0.310256 -0.038443 0.185617 0.116026 -0.008805 0.001767 0.257265 -0.019524 0.003917

-0.018282 0.263734 0.041796 -0.038443 0.295410 -0.145693 -0.009543 0.123378 -0.005536 -0.021160 0.273567 -0.012275

-0.061085 0.041796 1.231333 0.185617 -0.145693 1.518881 0.041998 -0.033909 0.610016 0.093122 -0.075186 1.352593
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Product of Matrix Square Root

Product of Matrix Square Root

0.869090
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5.9.2 Future bandwidth-reduction research 

More research/applications of the spdcf method for bandwidth reduction are in order, as the technique 
appears promising.  Other variations include using a representative grid of “anchor points” [26] instead 
of tie points per se.  This is also just one aspect of relevant research regarding bandwidth reduction.   

Another research path is the “zeroing out” of cross-covariance blocks when correlations are considered 
insignificant, e.g., absolute value less than 0.1 for all correlation coefficients in the cross-covariance 
block.  As such, the cross-covariance blocks are no longer explicitly carried as part of the error 
covariance matrix and understood as containing all zeros.  This may also necessitate the addition of 
minimal positive perturbations to the diagonal elements of the block-diagonal covariance matrices, such 
that the resultant multi-state vector error covariance matrix is valid.  In general, this is a non-trivial task 
for high-fidelity representation considering all of the statistical interconnections between pairs of 
individual state vector errors. 

Figure 5.9.2-1 is a conceptual example of “block-zero” storage for such a bandwidth limited 
approximation.  This assumes that individual state vectors “closer” together are ordered sequentially 
and have higher correlations, although such an ordering is not required for reduced bandwidth.  Blocks 
consist of error covariance block-diagonals and cross-covariance blocks, the former always included, i.e., 
never zeroed. 

 

Figure 5.9.2-1: Block-zero storage: non-zero blocks (blue), zero blocks (light blue),  
transpose not included (light purple) (except for block-diagonals for graphic only) 

This type of bandwidth reduction could play a significant role in the generation and storage of very large 
control point data bases (e.g., contiguous coverage of an entire country or countries), such as those 
potentially achievable via the Metric Information Network (MIN), described in references [9] and [23]. 
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5.10 Overview of References by Section 
The following provides and overview of references applicable to the various sections of this document.  

When multiple references are listed under a category, they are in approximate priority order. 

 Introduction (Section 4.1):  

o TGD 1 – “Accuracy and Predicted Accuracy in the NSG: Overview and Methodologies” 

o [14] – the important role of predictive statistics, in particular, the (multi-state vector) 

error covariance matrix, in a geospatial system 

o [6] - general overview to (image-based) geopositioning and the importance of accuracy 

predictions 

o [19] - general overview of predicted accuracy and uncertainty relative to GIScience 

 Predictive statistics, covariance matrix; definitions and properties (Sections 5.1 and 5.2): 

o [24] - primary probability/statistics reference for this document  

o [22] - primary linear algebra reference for this document  

o [20], [25], [28] - other related references 

 Error Ellipsoids (Section 5.3): 

o [14], [6] - general definition and equations for error ellipsoids 

o [29] - a proof that the error ellipsoid contains the maximum probability per volume 

o [22] – definition of matrix B>A and B >= matrix A and various related inverse and 

determinant properties 

 LE, CE, and SE (Section 5.4): 

o [6] - general definitions and approximation equations 

o [21] - general definitions and alternate approximation equations 

 Multi-state vector error covariance matrix (Section 5.5): 

o [14] and [15] – overview and examples 

 Generic methods for generation of the multi-state vector error covariance matrix (Section 5.7) 

o [20], [15], and [11] stochastic Gauss-Markov 

o [19], [27], and [17] random field Gauss-Markov 

o [3] – effects of statistical significance and errors corresponding to “ground truth” 

(sample statistics) in remotely sensed data 

o [14] and [20] - overview, and an overview on estimators, respectively 

o [11] - use of sample statistics from stereo imagery to estimate spdcf 

o [12] and [16] - the “A matrix” for the Kalman Filter 

o [1] – extension of the “A matrix” of [12]  to the “S matrix” for smoothers 

 Generic methods for representation of the multi-state vector error covariance matrix (Section 

5.8) 

o [5], [7], and [18] - the general spdcf and spdcf assembly method 

o [14] – error covariance matrix bandwidth reduction 

o [10] - spdcf assembly method constraint 

o [13] - matrix square roots in general for error covariance applications 

o [8] and [18] - the CSM four parameter spdcf 
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o [4], [2], and [30] - Geostatistics and its equivalent to the spdcf (variogram and 

correlogram) 

 Approximation of the multi-state vector error covariance matrix (Section 5.9) 

o [26] Anchor points 

o [9] and [23] the Metric Information Network 

6 Notes 

6.1 Intended Use 
This information and guidance document provides technical guidance to inform the development of 

geospatial data accuracy characterization for NSG GEOINT collectors, producers and consumers -- 

accuracy characterization as required to describe the trustworthiness of geolocations for defense and 

intelligence use and to support practices that acquire, generate, process, exploit, and provide 

geolocation data and information based on geolocation data.  This document is part of a series of 

complementary documents.  TGD 2a provides technical guidance for methods, practices, and algorithms 

in predictive statistics as of part of a series of information and guidance documents titled Accuracy and 

Predicted Accuracy in the NSG.  Other documents in this series address a more generalized overview of 

accuracy and predicted accuracy and additional topic specific technical guidance in sample statistics, 

specification and validation, estimators and quality control, Monte-Carlo simulation, and external data 

and quality assessment.   
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 Additional Terms and Definitions 

There are a number of authoritative guides as well as existing standards within the NSG and Department 

of Defense for definitions of the identified additional terms used in this technical guidance document.  In 

many cases, the existing definitions provided by these sources are either too general or, in some cases, 

too narrow or dated by intended purposes contemporary to the document's development and 

publication.  The definitions provided in this document have been expanded and refined to explicitly 

address details relevant to the current and desired future use of accuracy in the NSG.  To acknowledge 

the basis and/or linage of certain terms Section 3.1, we reference the following sources considered as 

either foundational or contributory: 

[a] Anderson, James M. and Mikhail, E., Surveying: Theory and Practice, 7th Edition, WCB/McGraw-Hill, 

1998. 

[b] DMA-TR-8400.1, DMA Technical Report: Error Theory as Applied to Mapping, Charting, and Geodesy. 

[c] Defense Mapping Agency, Glossary of Mapping, Charting, and Geodetic Terms, 4th Edition, Defense 

Mapping Agency Hydrographic/Topographic Center, 1981. 

[d]  ISO TC/211 211n2047, Text for ISO 19111 Geographic Information - Spatial referencing by 

coordinates, as sent to the ISO Central Secretariat for issuing as FDIS, July 17, 2006. 

[e] Joint Publication (JP) 1-02, Department of Defense Dictionary of Military and Associated Terms, 

November 8, 2010 as amended through January 15, 2016. 

[f] MIL-HDBK-850, Military Handbook: Glossary of Mapping, Charting, and Geodetic Terms, January 21, 

1994. 

[g] MIL-STD-2401, Department of Defense Standard Practice; Department of Defense World Geodetic 

System (WGS), January 11, 1994  

[h] MIL-STD-600001, Department of Defense Standard Practice; Mapping, Charting and Geodesy 

Accuracy, February 26, 1990. 

[i] National System for Geospatial Intelligence [Brochure] Public Release Case #15-489. 

[j] NGA.STND.0046_1.0, The Generic Point-cloud Model (GPM): Implementation and Exploitation, 

Version 1.0, October 03, 2015. 

[k] Oxford Dictionaries (www.oxforddictionaries.com/us/) copyright © 2016 by Oxford University Press. 

[l] Soler, Tomas and Hothem, L., “Coordinate Systems Used in Geodesy: Basic Definitions and Concepts”, 
Journal of Surveying Engineering, Vol. 114, No. 2, May 1988. 
 

A priori - Relating to or denoting reasoning or knowledge that proceeds from theoretical deduction 

rather than from observation or experience.  [k]  

 For typical NSG accuracy and predicted accuracy applications, a priori refers to a mathematical 

statistical model of errors and/or the corresponding state vector containing those errors prior to 

its adjustment using additional information. 

http://www.oxforddictionaries.com/us/
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A posteriori - Relating to or denoting reasoning or knowledge that proceeds from observations or 

experiences to the deduction of probable causes. [k] 

 For typical NSG accuracy and predicted accuracy applications, a posteriori refers to a refined 

mathematical statistical model of errors and/or the corresponding state vector containing those 

errors following its adjustment using additional information. 

Absolute Horizontal Accuracy - The range of values for the error in an object’s horizontal metric 

geolocation value with respect to a specified geodetic horizontal reference datum, expressed as a radial 

error at the 90 percent probability level (CE). [b],[f],[j]  

 There are two types of absolute horizontal accuracy: predicted absolute horizontal accuracy is 

based on error propagation via a statistical error model; and measured absolute horizontal 

accuracy is an empirically derived metric based on sample statistics. 

 The term “horizontal accuracy” is assumed to correspond to “absolute horizontal accuracy”. 

 The 90% probability level (CE) is the default; 95% and 50% probability levels are optional, i.e., 

CE_95 and CE_50, respectively. 

Absolute Vertical Accuracy - The range of values for the error in an object’s metric elevation value with 

respect to a vertical reference datum, expressed as a linear error at the 90 percent probability level (LE). 

[b],[f],[j] 

 There are two types of absolute vertical accuracy: predicted absolute vertical accuracy is based 

on error propagation via a statistical error model; and measured absolute vertical accuracy is an 

empirically derived metric based on sample statistics.  

 The term “vertical accuracy” is assumed to correspond to “absolute vertical accuracy”. 

 The 90% probability level (LE) is the default; 95% and 50% probability levels are optional, i.e., 

LE_95 and LE_50, respectively. 

Bias Error - A category of error; an error that does not vary from one realization (trial or experimental 

outcome) to the other.  When error is represented as a random variable, random vector, stochastic 

process, or random field, a bias error corresponds to a non-zero mean-value. [f],[j]  

 Caution: a given realization of a mean-zero stochastic process with typical temporal correlation 

and over a reasonable finite time interval appears to have a non-zero sample mean-value; 

however, when sample statistics are taken over enough multiple (independent) realizations, the 

sample mean-value approaches zero in accordance with the true mean-value.  This 

characteristic extends to random fields as well. 

CE-LE Error Cylinder – A 3D cylinder made up of CE and LE such that there is between 81-90% probability 

that the 3d error resides within. 

Confidence Ellipsoid - An ellipsoid centered at an estimate of geolocation such that there is a 90% 

probability (or XX% if specified specifically) that the true geolocation is within the ellipsoidal boundary 
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(ellipsoid interior).  A confidence ellipsoid is typically generated based on an error covariance matrix, an 

assumed mean-value of error equal to zero, and an assumed multi-variate Gaussian probability 

distribution of error in up to three spatial dimensions. 

Correlated Error - A category of errors; errors that are correlated with other errors, and typically 

represented in the NSG as a random vector, stochastic processes, or random field.  A correlated error is 

independent (uncorrelated) with itself and other errors from one realization (trial or experimental 

outcome) to the next.  However, within a given realization, it is correlated with other errors of interest:   

 If a random vector, the various elements (random variables) which make it up are correlated 

with each other (intra-state vector correlation). 

 If a stochastic process, the collection of random vectors which make up the stochastic process 

are correlated with each other (inter-state vector correlation).  That is, the elements of one 

random vector are correlated with the elements of another random vector, typically the closer 

the two random vectors in time, the greater the correlation.  A similar concept is applicable to 

random fields. 

Correlated Values - Values (of random variables) which are related by a statistical interdependence. For 

two random variables, this interdependence is represented by their covariance and typically expressed 

as a correlation coefficient – both have non-zero values.  This interdependence is relative to deviations 

about their respective mean-values.  [f] 

Covariance - A measure of the mutual variation of two random variables, where variations (deviations or 

dispersions) are about their respective mean-values. [b]  

Covariance Function - The cross-covariance matrix of two random vectors associated with a (same) 

stochastic process or random field as a function of their corresponding time or spatial locations, 

respectively.  If the stochastic process is (wide sense) stationary or the random field (wide sense) 

homogeneous, the cross-covariance matrix is a function of delta time or delta position, respectively.  

When evaluated at delta equal to zero, it equals the common covariance matrix.  

Covariance Matrix - A symmetric, 𝑛𝑥𝑛 positive definite matrix populated with the variances and 

covariances of the random variables contained within a single, multi-component (𝑛𝑥1) state vector or 

random vector.  Note that if row 𝑖 ( 1 ≤ 𝑖 ≤ 𝑛) and all corresponding columns 𝑗 ( 1 ≤ 𝑗 ≤ 𝑛 ,𝑗 ≠ 𝑖) are 

zero, random variable 𝑖 is uncorrelated with all of the other random variables 𝑗.  [b] 

Cross-covariance Matrix - An 𝑛𝑥𝑚 matrix containing the covariance between each pair of elements 

(random variables) of an 𝑛𝑥1 random vector and an 𝑚𝑥1 random vector. 

Deterministic Error - An error that is not random or dependent on “chance” – a “known” value, such as 

the specific realization of an error of an estimated geolocation as compared to “ground truth”, i.e., their 

difference, where “ground truth” is assumed error-free. 

Distance Constant - The (separation) distance value such that the correlation coefficient for spatial 

correlation expressed as a decaying exponential equals 𝑒− ≅ 0.37 . 
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Earth Centered Earth Fixed (ECEF) Cartesian Coordinate System - The Conventional Terrestrial 

Reference System (CTRS) with the following definition:  

1) Origin: at the geocenter (center of mass of the earth). 

2) z-axis: Directed toward the conventional definition of the North Pole, or more precise, towards 

the conventional terrestrial pole as defined by the International Earth Rotation Service (IERS). 

3) x-Axis: Passes through the point of zero longitude (approximately on the Greenwich meridian) as 

defined by the IERS. 

4) y-axis: forms a right-handed coordinate system with the x- and z-axes.      [l] 

Error (augmented definition) - The difference between the observed or estimated value and its ideal or 

true value. [f] There are a number of different categories of errors applicable to the NSG: Bias Error, 

Random Error, and Correlated Error.  In general, an error of interest may be a combination of errors 

from these categories. Their combination is typically represented as either a random variable, random 

vector, stochastic process, or random field: 

 A random variable represents a bias error plus a random error.  The former corresponds to the 

random variable’s mean-value, and if equal to zero, the random variable represents random 

error only, which is uncorrelated from one realization of the random variable to the next 

realization. 

 A random vector, stochastic process, and random field can represent all three categories of 

error.  The random variables that make-up (are elements of) random vectors are uncorrelated 

from one realization to the next by definition.  However, within a given realization, they can also 

be correlated with each other:   

o For a random vector per se, this correlation is also termed “intra-state vector 

correlation”. 

o For a stochastic process, which consists of a collection of random vectors, random 

variables in one random vector can also be correlated with random variables in another 

random vector, this is also termed “inter-state vector” correlation.  The same concept is 

applicable to random fields. 
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Error Ellipsoid - An ellipsoid such that there is a 90% probability (or XX% if specified specifically) that 

geolocation error is within the ellipsoidal boundary (ellipsoid interior).  An error ellipsoid can be  

generated based on a predictive or sample-based  error covariance matrix, centered at an assumed 

predictive mean-value of error equal to zero or a sample-based mean-value of error not equal to zero, 

and an assumed multi-variate Gaussian probability distribution of error in up to three dimensions. 

Estimator - an algorithm/process which estimates the value of an nx1 state vector.  Its inputs are 

measurements related to the state vector and may include a priori information about the state vector.  

 An estimator is usually designed to be an optimal estimator relative to a cost function, such as 

the sum of weighted a posteriori measurement residuals, minimum mean-square solution error, 

etc.   

 Estimators are sequential or batch processes, and an optimal estimator should include both an 

estimate of the state vector and its predicted accuracy, usually an error covariance matrix, as 

output. A properly implemented MIG for a target’s geolocation is an optimal estimator.  

Gaussian (or Normal) probability distribution - a specific type of probability distribution for a random 

variable.  The distribution is specified by either a Gaussian probability density function or a Gaussian 

cumulative distribution function.  These in turn are completely characterized by the random variable’s 

mean-value and variance.   

 The Gaussian (probability) distribution is a common distribution that approximates many kinds 

of errors of interest to the NSG, and approximates the distribution for a sum of errors from 

different (non-Gaussian) distributions as well (Central Limit Theorem).  A Gaussian distribution 

corresponding to an nx1 random vector is termed a multi-variate Gaussian distribution. 

Geodetic Coordinate System - Coordinate system in which position is specified by geodetic latitude, 

geodetic longitude and (in the three-dimensional case) ellipsoidal height [d]. 

Ground Truth - the reference or (assumed) true value of a geolocation of a measured quantity (e.g. 

associated with an absolute geolocation, or a relative mensuration).   

Homogeneous - A descriptor for a random field.  A random field is (wide-sense) homogeneous if 

corresponding (a priori) statistics are invariant to spatial location.  For example, the mean-value and 

covariance matrix corresponding to its random vectors are constant, and correlation between two 

corresponding but arbitrary random vectors in the same realization is a function of spatial distance 

between them, not the explicit spatial location of each. 

Horizontal Error - As applied to geospatial measurements and processes, horizontal error is typically 

observed in the 𝑥, 𝑦 plane of a local right-handed coordinate system where the 𝑥, 𝑦 plane is defined as 

tangent to the defined reference surface at the point of origin.  While horizontal error is the 𝑥 and 𝑦 

components of error, it may be generalized by its magnitude or 2D radial error.   

Inter-state Vector Correlation - The correlation between the errors (random variables) of the elements 

in two different state vectors. 
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Intra-state Vector Correlation - The correlation between the errors (random variables) of different 

elements in the same state vector. 

Local Tangent Plane Coordinate System (Coordinate System/Coordinate Reference System) - A local 

X,Y,Z right-handed rectangular coordinate system such that the origin is any point selected on a given 

reference ellipsoid, its XY plane is tangent to the reference ellipsoid at the point of origin, and the Y-axis 

is typically directed to the North Pole (e.g. an East-North-Up (ENU) system).  [a] 

Mean-Value - The expected value of a random variable.  Given a collected sample of measurements, the 

sample mean-value is the average of the values of the sample measurements.  The mean-value of a 

predictive error is typically assumed zero unless specifically stated otherwise.  If correctly modelled, the 

predictive mean-value should be closely approximated by the sample mean-value taken over a large 

number of independent and identically distributed samples.   

 The concept of mean-value readily extends to random vectors and is the vector of the mean-

values of the individual components or random variables making up the random vector.  It 

readily extends to stochastic processes and random fields as well, since they are collections of 

random vectors.  If (wide-sense) stationary or (wide-sense) homogeneous, respectively, their 

corresponding mean-value is a constant random vector mean-value. 

Metadata - Higher level or ancillary data describing a collection of data, e.g., the sensor support data 

corresponding to an image, which specifies corresponding sensor position, attitude, interior orientation 

parameters, etc. 

Multi-image Geopositioning (MIG) - An optimal solution for a “target’s” geolocation (state vector) with 

reliable predicted accuracies based on the (weighted) measurements of the geolocation in one or more 

images.    A batch process which minimizes the sum of weighted a posteriori measurement residuals, 

where the latter may also include measurements equivalent to a priori estimates of geolocation.  MIG 

can also correspond to the simultaneous solution for the geolocation of multiple targets. In general, a 

MIG solution’s predicted accuracies correspond to or are derived from the solution’s a posteriori error 

covariance matrix.  

Multi-state Vector Error Covariance Matrix - An error covariance matrix corresponding to multiple state 

vector errors (random error vectors) “stacked” one on top of the other as one large state vector error 

(random error vector), e.g. to represent the position and attitude errors of multiple images’ adjustable 

parameter errors that impact the solution and predicted accuracy of a subsequent MIG.  The multi-state 

vector error covariance matrix is sometimes termed the joint covariance matrix for a collection of 

multiple state vector errors. 

Order Statistics - Nonparametric statistics performed on a set ordered by ascending magnitude of 

randomly sampled values.  Nonparametric statistics assume no a priori information about the underlying 

probability distribution of a random variable such as its mean-value, variance, or type of probability 

distribution function.  In the NSG, order statistics are used to compute scalar accuracy metrics from 

independent and identically distributed samples of error. 
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Percentile - If a random variable’s probability (or sample) distribution is divided into 100 equal parts, the 

value of the random variable that corresponds to the percentage of the distribution equal to or below 

the specified percentile, e.g. the 90th percentile indicates the lowest sample value such that it is greater 

than the values of 90 percent of the samples.  

 A more formal definition is as follows: The 𝑝 percentile of a random variable 𝑥 is defined as the 

smallest number 𝑥𝑝 such that 𝑝 = 𝑝𝑟𝑜𝑏{𝑥 ≤ 𝑥𝑝}.  Thus, the probability distribution function 

(typically unknown) of the random variable 𝑥 evaluated at 𝑥𝑝 is equal to 𝑝.   𝑥𝑝 is a deterministic 

parameter with typically unknown value.   

Precision - The closeness to one another of a set of repeated observations of a random variable. [a],[f] 

 In terms of accuracy, precision is a measure of the repeatability of the underlying errors.  High 

accuracy implies high precision, but not vice versa.  For example, for an error represented as a 

random variable, high precision implies a small standard deviation, but high accuracy implies 

both a small standard deviation and a small or zero mean-value (or bias). 

Principal Matrix Square Root - The principal matrix square root of a valid error covariance matrix is a 

valid error covariance matrix itself of the same dimension such that when multiplied with itself yields 

the original error covariance matrix.  The calculation of principal matrix square root is based on Singular 

Value Decomposition. 

Probability density function (pdf) - A function that defines the probability distribution of a random 

variable.  If continuous, its integral is the (cumulative) probability distribution function. 

Probability distribution - Identifies the probability of a random variable’s values over an applicable 

range of values.  There are many different types of probability distributions: Gaussian or Normal, 

uniform, exponential, etc.  

 In most NSG applications for accuracy and predicted accuracy, the random variable and its 

probability distributions are assumed continuous. 

 The probability distribution is specified by either a probability density function or a (cumulative) 

probability distribution function; either based on an a priori model or sample statistics. 

Probability distribution function (cdf) - The (cumulative) probability distribution function defines the 

probability that a random variable’s value is less than or equal to a specified number in the interval 

[0,1]. 

Radial Error - A generalization of two horizontal error components (𝑥, 𝑦) or three dimensional 

(horizontal and vertical error components – 𝑥, 𝑦, 𝑧) error components to a distance value (magnitude) as 

measured along the radius of a circle or sphere, respectively.   
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Random Error - A category of error; a measure of deviation from an ideal or true value which results 

from an accidental and unknown combination of causes and varies from one measurement to the next. 

Not deterministic.  For NSG applications, a random error is typically represented as a random variable, 

random vector, stationary process, or random field.  And more specifically, as deviations about their 

mean-values, the latter considered biases.  [b],[f] 

 The random error corresponding to a random variable or the random error corresponding to 

(the elements of) a random vector are independent (uncorrelated) from one realization to the 

next, by definition. 

 The random error corresponding to (the elements of) a random vector can also be correlated 

between the various elements for a given realization (intra-state vector correlation); hence this 

error is also a correlated error. 

 The random error corresponding to a stochastic process corresponds to the collection of 

random errors associated with the collection of random vectors making up the stochastic 

process.  Random error is independent (uncorrelated) from one realization to the next.  

However, within a specific realization, the individual random error vectors are typically 

temporally correlated amongst themselves (inter-state vector correlation); hence, random error 

is also correlated error.  This same characteristic extends to random fields. 

 The probability distribution for a random variable representing a random error is arbitrary – not 

necessarily Gaussian. 

Random Error Vector - An error represented by a nx1 random vector, and in the NSG, typically 

corresponds to the error in a state vector’s value.  The error itself could correspond to a combination of 

errors from different error categories: bias error, random error, and/or correlated error.  That is, the 

term “random error vector” does not imply the corresponding category of error is necessarily (only) 

“random error”. 
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Random Field - A random field (RF) is a collection of random vectors (RV), parameterized by an N-

dimensional spatial vector q.  In general, two different random vectors from the same realization of the 

random field are correlated.  In the NSG, when error is represented by a random field, its corresponding 

statistics are specified by a statistical error model.  A general descriptor of a given random field is as 

follows: a (“scalar” or “multi-variate”) (“homogeneous” or “non-homogeneous”) “ND random field”.  

 Scalar (n=1) or multi-variate (n>1) refers to the number of elements n that each random vector 

contains and is sometimes described as “(nd)”, e.g. (2d) corresponds to 2 elements (random 

variables) per random vector. 

 Homogeneous or non-homogeneous refers to whether the corresponding statistics are invariant 

or vary over spatial location q. 

 ND refers to the number of spatial dimensions (number of elements in q), e.g. 3D corresponds 

to 3 spatial dimensions.  Each random vector corresponds to a unique value of q. 

 As an example of terminology, “a multi-variate homogeneous 3D random field” or more 

specifically “a homogeneous 3D random field (2d)” corresponds to a multi-variate homogeneous 

random field over 3 spatial dimensions (q is a vector with 3 elements).  The random vectors 

contain 2 elements. 

 Spatial dimensions are general.  For typical NSG applications, they correspond to some 

combination of geolocation directions and time.  Note that a stochastic process is also a random 

field with N=1. 

 In general, the collection of random vectors is infinite for a random field; however, only a finite 

subset are of interest for most applications, i.e., random vectors associated with a finite set of 

spatial locations. 

 For typical NSG applications, the spatial correlation of a random field is specified by one of more 

strictly positive definite correlation functions (spdcf) contained in the corresponding statistical 

error model. 
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Random Variable - A variable whose value varies by chance, i.e., non-deterministic. Somewhat more 

formally, a random variable is a mapping from the space of experimental outcomes to a space of 

numbers.  In the NSG, when error is represented by a random variable (a random vector with one 

component or element, i.e., n=1), its corresponding statistics are specified by a statistical error model.  

 For most NSG applications, the space of experimental outcomes is already a number.  For 

example, the x-component of sensor position can be considered a random variable.  

Equivalently, it can be defined as the true x-component of sensor position plus x-component of 

sensor position error, the former a deterministic (typically unknown) value and the latter a 

random variable.   

 A random variable is statistically characterized by its mean-value, variance, and (more 

completely) its probability density function (pdf).  The probability density function (pdf) is 

typically unknown and not included, but if needed for the calculation of probabilities, assumed 

Gaussian distributed with the pdf completely characterized by the mean-value and variance. 

Random Vector - A random vector (RV) is an nx1 vector which contains n random variables as 

components or elements.  In the NSG, when error is represented as a random vector, its corresponding 

statistics are specified by a statistical error model.  The corresponding random vector is also sometimes 

termed a random error vector.  

 The realization of a Random Vector corresponds to a specific value of the vector (components or 

elements) for a given event such as a trial or experiment.  Important descriptive statistics of a RV 

are its mean (vector) value and the error covariance matrix about the mean, and optionally, a 

multi-variate probability density function.  These statistics can be predictive or sample-based.   

Realization - For NSG accuracy and predicted accuracy applications, a specific trial or experimental 

outcome or independent sample involving a random error (category of error). 

Relative Horizontal Accuracy - The range of values for the error in the difference between two objects’ 

horizontal metric geolocation values with respect to a specified geodetic horizontal reference datum; 

e.g. expressed as a radial error at the 90 percent probability level (CE90). There are two types of relative 

horizontal accuracy: predicted relative horizontal accuracy is based on error propagation via a statistical 

error model(s); and measured relative horizontal accuracy is an empirically derived metric based on 

sample statistics. 

Relative Vertical Accuracy - The range of values for the error in the difference between two objects’ 

vertical metric geolocation values with respect to a specified geodetic vertical reference datum; e.g.  

expressed as a linear error at the 90 percent probability level (LE90). There are two types of relative 

vertical accuracy: predicted relative vertical accuracy is based on error propagation via a statistical error 

model(s); and measured relative vertical accuracy is an empirically derived metric based on sample 

statistics. 
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Scalar Accuracy Metrics (augmented definition) - Convenient one-number summaries of geolocation 

accuracy and geolocation predicted accuracy expressed as a probability:   [b],[f], and [h]  

 Linear Error (LE) - LE is an unsigned value that corresponds to the length of a vertical line 

(segment) such that there is a 90% probability that the absolute value of vertical error resides 

along the line.  If the line is doubled in length and centered at the target solution, there is a 90% 

probability that the true target vertical location resides along the line.  LE_XX corresponds to LE 

at the XX % probability level. 

 Circular Error (CE) - CE is an unsigned value that corresponds to the radius of a circle such that 

there is a 90% probability that the horizontal error resides within the circle; or equivalently, if 

the circle is centered at the target solution, there is a 90% probability the true target horizontal 

location resides within the circle.  CE_XX corresponds to CE at the XX % probability level.  

 Spherical Error (SE) - SE is an unsigned value that corresponds to the radius of a sphere such that 

there is a 90% probability that 3d error resides within, or equivalently, if the sphere is centered 

at the target solution, there is a 90% probability that the true target location resides within the 

sphere.  SE_XX corresponds to SE at the XX % probability level. 

For the above scalar accuracy metrics:  

 It is assumed that the underlying 𝑥-𝑦-𝑧 coordinate system is a local tangent plane system, i.e., 𝑥 

and 𝑦 are horizontal components and 𝑧 the vertical component.   

 CE-LE corresponds to the CE-LE error cylinder.  There is a probability between 81 to 90 percent 

that 3d radial error resides within the cylinder.  The former value corresponds to uncorrelated 

horizontal and vertical errors, the latter value to highly correlated horizontal and vertical errors. 

 LE_XX, CE_XX, and SE_XX (aka LEXX, CEXX, and SEXX, respectively) are also called XX percentiles 

for absolute vertical errors, horizontal radial errors, and spherical radial errors, respectively.  XX 

is expressed as an integer greater than zero and less than 100. 

Sensor support data  - See “Metadata”. 

Spatial Correlation - The correlation between the elements (random variables) of two random vectors at 

two different spatial locations associated with the same realization of a random field. 

Standard Deviation - The square root of the variance of a random variable.  A measure of deviation or 

dispersion about the random variable’s mean-value. 

State Vector - A vector of parameters or variables that describe a system’s state. 

State Vector Error - A vector of errors corresponding to an estimate of a state vector relative to a 

(typically unknown) true state vector; a random vector of errors, or random error vector. 

Stationary - A descriptor for a stochastic process with corresponding (a priori) statistics invariant over 

time.  See homogeneous as well for random fields, which if corresponding to one spatial dimension are 

stochastic processes. 
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Stochastic Process - A stochastic process (SP) is a collection of random vectors (RV), parameterized by a 

1D quantity, typically time.  For a given realization of the stochastic process, the individual random 

vectors are correlated with each other.  If the random vectors consist of one element or component 

(n=1), the stochastic process is sometimes called a scalar stochastic process, and if greater than one, a 

multi-variate stochastic process.  A stochastic process is also a random field with one spatial (or time) 

dimension, i.e., N=1.  In the NSG, when error is represented as a stochastic process, its corresponding 

statistics are specified by a statistical error model. 

Strictly Positive Definite Correlation Function (spdcf) - A function which models the statistical 

correlation between random vectors (random variables), typically applied in the NSG to describe the 

temporal correlation and/or spatial correlation between various random vectors which are part of a 

stochastic process or random field, i.e., the spdcf is a function of delta time or delta distance (possibly in 

each of multiple directions) between random vectors.  The proper use of an spdcf ensures assembly of a 

valid multi-state vector error covariance matrix, i.e., positive definite and symmetric. 

Systematic Error - An error characteristic or error effect due to errors that are represented by random 

variables, random vectors, stochastic processes, or random fields.  For example, an effect on 

observations (samples) such that their pattern of magnitude and direction are consistent but not 

necessarily constant. [f],[j]  Such an effect can be associated with:    

 Error(s) represented by a stochastic process or random field which appear systematic across 

time or space, respectively, due to temporal or spatial correlation, respectively. 

 The error in a frame image-to-ground sensor model’s adjustable parameter for focal length.  

This error is typically represented by a random variable, with a mean-value of zero and a 

constant variance, but its effect when projected to the ground appears as a systematic error 

across ground locations, e.g., it has a scaling effect which increases the closer the ground point 

to the image footprint’s boundary. 

Temporal Correlation - The correlation between the elements (random variables) of two random 

vectors at two different times associated with the same realization of a stochastic process. 

Time Constant - The delta time value such that the correlation coefficient for temporal correlation 

expressed as a decaying exponential equals 𝑒− ≅ 0.37 .        

Uncertainty - A lack of certainty; limited knowledge; unknown or imperfect information.  In terms of 

NSG applications, more general than the concepts of errors and accuracy, but sometimes used 

informally as a synonym.  Applies to predicted accuracy but not to empirical (sample-based) accuracy. 

Uncorrelated Error - At an intuitive level, an error that is statically unrelated to all other relevant errors.  

More precisely, if two random variables represent two uncorrelated errors (about their respective 

mean-values), their covariance and their corresponding correlation coefficient are zero.  A random 

variable is uncorrelated (with itself) from one realization to the next by definition. This latter property is 

also true for the random variables making up random vectors, stochastic processes, and random fields.  

However, these three representations typically include correlated errors within the same realization.   
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Uncorrelated Values - Values (of random variables or errors) which are statistically unrelated. [f] This is 

represented for two random variables by their covariance with a value of zero. 

Vertical Error - As applied to geospatial measurements and processes, vertical error is a signed and one 

dimensional (linear) error value typically observed in the direction of the 𝑧-axis of a local right-handed 

coordinate system where the 𝑥, 𝑦 plane is defined as tangent to the defined reference surface at the 

point of origin and the 𝑧-axis is normal to the 𝑥, 𝑦 plane and positive in the up direction. 

WGS84  - World Geodetic System 1984 – A documented and formally maintained global coordinate 

system which allows an unambiguous representation of positional information by providing the basic 

reference frame (coordinate system), geometric figure for the earth (ellipsoid), earth gravitational 

model, and means to relate positions on various geodetic datums and systems for DoD operations and 

applications. [g]  
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 Pseudo-code for Rendering the Error Ellipsoid 

This appendix corresponds to Section 5.3.4 on “Rendering the error ellipsoid”; in particular, 

corresponding pseudo-code (MATLAB). 

B.1 Plot Error Ellipse 

function makeEllipse(covar,mCoord,valFlag,prob) 
%%%%% Creates ellipse based on provided covariance matrix 
%%%%%  
%%%%% Inputs: covar: 2x2 covariance matrix 
%%%%%         mCoord: mean coordinate value 
%%%%%         valFlag: flag indicating if fourth input is probability or 

%%%%%        distance value 
%%%%%                  entered value can either be 'p' for probability or 
%%%%%                  'd' for distance value 
%%%%%         prob: desired probability or distance value for ellipsoid 

  
%%% Checks orientation of mean coordinate vector 
if size(mCoord) == [1 2] 
    mCoord  = transpose(mCoord); 
end 

  
%%% Checks entered flag to determine entered value type 
if strcmp(valFlag,'d') 
    d   = prob; 
elseif strcmp(valFlag,'p') 
    %%% Checks entered probability to determine distance value 
    if prob == .5 
        d   = 1.1774; 
    elseif prob == .9 
        d   = 2.1460; 
    elseif prob == .95 
        d   = 2.4477; 
    elseif prob == .99 
        d   = 3.0349; 
    elseif prob == .999 
        d   = 3.7169; 
    else 
        fprintf('Entered probability is not one of the options.\n') 
        quit 
    end 
else 
    fprintf('Entered flag does not match possible values.\n') 
    quit 
end 

  
%%% Single Value Decomposition for Eigen values and vectors 
[u,s1]  = svd(covar); 

  
%%% Scales Eigen values by distance value 
ellAxes = d*sqrt(diag(s1)); 

  
%%% Rotation angle from Eigen space to XYZ space 
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gam = atan2(u(2,1),u(1,1)); 

  
%%% Vector of angle values for use in polar coordinate calculation of 
%%% points on ellipse 
phi     = 0:2*pi/500:2*pi; 

  
%%% Calculation of coordinates on ellipse using polar coordinates and 
%%% rotating from Eigen space to XYZ space 
Xp(1,:) = ellAxes(1)*cos(phi)*cos(gam)-

ellAxes(2)*sin(phi)*sin(gam)+mCoord(1); 
Xp(2,:) = 

ellAxes(1)*cos(phi)*sin(gam)+ellAxes(2)*sin(phi)*cos(gam)+mCoord(2); 

  
%%% Matrix of ellipse axes end points in Eigen space 
ellAxes = [ellAxes(1) 0;-ellAxes(1) 0;0 ellAxes(2);0 -ellAxes(2)]; 

  
%%% Rotates ellipse axes from Eigen space into XYZ space and translates 
%%% axes to mean coordinate 
ellAxes = transpose(u*transpose(ellAxes)+mCoord*ones(1,size(ellAxes,1))); 

  
%%% Plots ellipse and axes 
figure 
clf 
hold on 
plot(Xp(1,:),Xp(2,:),'g-','LineWidth',2) 
plot(ellAxes(1:2,1),ellAxes(1:2,2),'b-','LineWidth',2) 
plot(ellAxes(3:4,1),ellAxes(3:4,2),'b-','LineWidth',2) 
xlabel('X') 
ylabel('Y') 
grid on 
axis equal 
legend('Ellipe','Ellipse Axes') 
hold off 
drawnow 

 

B.2 Plot Error Ellipsoid 

function makeEllipsoid(covar,mCoord,valFlag,prob) 
%%%%% Creates ellipsoid based on provided covariance matrix 
%%%%%  
%%%%% Inputs: covar: 3x3 covariance matrix 
%%%%%         mCoord: mean coordinate value 
%%%%%         valFlag: flag indicating if fourth input is probability or 

%%%%%        distance value 
%%%%%                  entered value can either be 'p' for probability or 
%%%%%                  'd' for distance value 
%%%%%         prob: desired probability or distance value for ellipsoid 

  
%%% Checks orientation of mean coordinate vector 
if size(mCoord) == [1 3] 
    mCoord  = transpose(mCoord); 

end 

  
%%% Checks entered flag to determine entered value type 
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if strcmp(valFlag,'d') 
    d   = prob; 
elseif strcmp(valFlag,'p') 
    %%% Checks entered probability to determine distance value 
    if prob == .5 
        d   = 1.5382; 
    elseif prob == .9 
        d   = 2.5003; 
    elseif prob == .95 
        d   = 2.7955; 
    elseif prob == .99 
        d   = 3.3682; 
    elseif prob == .999 
        d   = 4.0336; 
    else 
        fprintf('Entered probability is not one of the options.\n') 
        quit 
    end 
else 
    fprintf('Entered flag does not match possible values.\n') 
    quit 
end 

  
%%% Single Value Decomposition for Eigen values and vectors 
[u,s1]  = svd(covar); 

  
%%% Scales Eigen values by distance value 
ellAxes = d*sqrt(diag(s1)); 

  
%%% Uses MATLAB function to generate points on ellipsoid in Eigen space 
[x,y,z] = ellipsoid(0,0,0,ellAxes(1),ellAxes(2),ellAxes(3),20); 

  
%%% Moves ellipsoid coordinates from three n+1 by n+1 matrices into a 
%%% (n+1)^2 by 3 matrix 
xyzEll  = zeros(size(x,1)^2,3); 
for k = 1:size(x,2) 
    xyzEll(k*size(x,1)-(size(x,1)-1):k*size(x,1),1) = x(:,k); 
    xyzEll(k*size(x,1)-(size(x,1)-1):k*size(x,1),2) = y(:,k); 
    xyzEll(k*size(x,1)-(size(x,1)-1):k*size(x,1),3) = z(:,k); 
end 

  
%%% Rotates ellipsoid points from Eigen space into XYZ space and translates 
%%% points to mean coordinate 
ApertEllLoc = transpose(u*transpose(xyzEll)+mCoord*ones(1,size(xyzEll,1))); 
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%%% Moves ellipsoid coordinates from a (n+1)^2 by 3 matrix into a n+1 by 
%%% n+1 by 3 matrix for plotting 
ApxyzEllLoc = zeros(size(x,1),size(x,2),3); 
for k = 1:size(x,2) 
    ApxyzEllLoc(:,k,1)= ApertEllLoc(k*size(x,1)-(size(x,1)-1):k*size(x,1),1); 
    ApxyzEllLoc(:,k,2)= ApertEllLoc(k*size(x,1)-(size(x,1)-1):k*size(x,1),2); 
    ApxyzEllLoc(:,k,3)= ApertEllLoc(k*size(x,1)-(size(x,1)-1):k*size(x,1),3); 
end 

  
%%% Matrix of ellipsoid axes end points in Eigen space 
xyzAxes     = [ellAxes(1) 0 0;-ellAxes(1) 0 0; 
               0 ellAxes(2) 0;0 -ellAxes(2) 0; 
               0 0 ellAxes(3);0 0 -ellAxes(3)]; 

  
%%% Rotates ellipsoid axes from Eigen space into XYZ space and translates 
%%% axes to mean coordinate 
ApertAxeLoc = transpose(u*transpose(xyzAxes)+mCoord*ones(1,size(xyzAxes,1))); 

  
%%% Plots ellipsoid and axes 
figure 
clf 
hold on 
plot3(ApertAxeLoc(1:2,1),ApertAxeLoc(1:2,2),ApertAxeLoc(1:2,3),'b-

','LineWidth',2) 
surf(ApxyzEllLoc(:,:,1),ApxyzEllLoc(:,:,2),ApxyzEllLoc(:,:,3),'FaceColor',[0 

1 0],'EdgeColor',[0 .4 0]) 
plot3(ApertAxeLoc(3:4,1),ApertAxeLoc(3:4,2),ApertAxeLoc(3:4,3),'b-

','LineWidth',2) 
plot3(ApertAxeLoc(5:6,1),ApertAxeLoc(5:6,2),ApertAxeLoc(5:6,3),'b-

','LineWidth',2) 
alpha(.3)       % sets transparency of ellipsoid faces 
view(-15,40) 
xlabel('X') 
ylabel('Y') 
zlabel('Z') 
grid on 
axis equal 
legend('Ellipsoid Axes','Ellipsoid') 
hold off 
drawnow 
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 Supplementary Material on Predictive Scalar Accuracy 

Metrics  

This appendix corresponds to: 

C.1 Solution Comparisons  - the various performance tests addressed in Sections 5.4.2.6 (CE) and 5.4.3.5 

(SE); 

C.2 Complete Set of SE Interpolation Tables referenced in Section 5.4.3; 

C.3 Pseudo-Code for the various LE, CE, and SE computation methods. 

C.1 Solution Comparisons Supporting Sections 5.4.2.6 (CE) and 5.4.3.5 (SE) 

Both “Method versus Method Comparison” tests and “Method Repeatability” tests were made.  

Methods consisted of Table Interpolation (Table_Interp), Monte Carlo Covariance Square Root 

(MC_Cov_sqrt), and Integral Equation (IE) methods for the computation of CE_XX or SE_XX.   

Table_Interp assumed an error mean-value of zero by definition, MC_Cov_sqrt usually assumed an 

arbitrary mean-value, and IE was tested with both a mean-value of zero and an arbitrary mean-value. 

Table_Interp assumed fixed probability levels, and all other methods (unless compared to Table_Interp) 

assume arbitrary probability levels, randomly selected (uniform distribution) within the interval 

[0.1,0.999]. 

For Method versus Method Comparison tests, the number of independent samples was specified.  Thus, 

if 1000 were specified, there were 1000 pairs of CE_XX (or SE_XX) calculated for comparison, each pair 

generated using an error covariance matrix and mean-value generated randomly for that specific pair, 

and for a randomly selected (uniform distribution) probability within the interval [0.1,0.999] for that 

specific pair.    (The latter was not applicable if one of the methods was Table_Interp , which utilizes 

fixed, specified probability levels XX.) 

For Method Repeatability tests, the number of independent samples was specified as above and a 

corresponding error covariance matrix and mean-value generated randomly for each sample.  In 

addition, the number of perturbations was specified over which sample statistics of the CE_XX or SE_XX 

calculations were computed for that sample.  For the MC_Cov_sqrt method, perturbations consisted of 

independent sets of 1E6 random vectors 𝑛𝑖 used in the calculation of CE_XX or XE_XX.  For the IE 

method, perturbations consisted of different initial estimates of CE_XX or SE_XX used to solve the 

integral equation.  The initial estimate for the first perturbation is the standard low-fidelity deterministic 

estimate as implemented in the pseudo-code.  Each subsequent perturbation equaled (1 + d)*(first 

perturbation), where d is a uniform random number within the interval [-0.2,0.2]. 

The summary performance results presented in Table 5.4.2.6-1 for CE_XX and Table 5.4.3.5-1 for SE_XX 

are from the integrated results of the combined tests.  For a given Method, its repeatability test 

provides the statistical results of inherent calculation error.  All methods have a repeatability test other 
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than Table_Interp.  Its inherent calculation error is determined by its comparison to IE (mean zero), from 

which the entries for the interpolation table were generated.  In addition, various combinations of 

Method versus Method comparison tests were also performed, essentially as QA checks on the 

repeatability tests. 

For a given sample in a Method versus Method Comparison test, the primary metric is defined as 

relative % difference between the two methods: 100*(CE_XX_Method_1 – 

CE_XX_Method_2)/CE_XX_Method_2, with a similar metric defined for SE.  Sample statistics of this 

performance metric are then taken over all of the samples. 

For a given sample in a Method Repeatability test, the (internal) sample standard deviation about the 

(internal) sample mean is taken over all corresponding perturbations and the performance metric 

computed as % of the (internal) sample standard deviation relative to the (internal) sample mean, i.e., 

100*(standard deviation/mean). In addition, for a given sample, the maximum deviation of all 

perturbations relative to the sample mean is computed relative to the (internal) sample mean, i.e., 

100*(max deviation/mean). Sample statistics for both of these performance metrics are then taken over 

all samples.  

Note that the various tests also provided timing results corresponding to the pseudo-code (MATLAB).  

All comparison and repeatability tests, along with their timing results, were entered into spread-sheets.  

Summary results corresponding to these various spread-sheets are plotted below, with related 

comments. 

C.1.1 Circular Error (CE) 

For a given sample, the error covariance matrix and mean-value (if not specified  zero) were randomly 

computed as follows: 

The error covariance was randomly generated per sample about the mean-value as: 

𝐶𝑜𝑣𝑟𝑎𝑛𝑑𝑜𝑚 = 4  
𝑢1 𝑢3√𝑢1 × 𝑢2

𝑢3√𝑢1 × 𝑢2 𝑢2
 , where u1 and u2 are random and independent samples 

from a (0,1) uniform distribution, and u3 a random and independent sample from a (-1,1) uniform 

distribution.  The square root of the smallest to largest eigenvalue was also guaranteed/checked as 

𝑟 ≥0.00001, 0.02, and 0.05 for tests involving MC_Cov_sqrt, IE (mean zero), and IE (mean not zero), 

respectively. 

The mean value, if not specified as zero for the test, was randomly generated as �̅�𝑟𝑎𝑛𝑑𝑜𝑚 = 4  
𝑢4
𝑢5

 , 

where u4 and u5 are random and independent samples from a (-1,1) uniform distribution. 
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C.1.1.1 CE Method Repeatability Tests 

(1) Table_Interp: not applicable 

(2) MC_Cov_sqrt:1000 samples and 50 perturbations per sample 

 

 

(3)IE (mean zero):1000 samples and 10 perturbations per sample 
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(4) IE (mean value arbitrary):1000 samples and 10 perturbations per sample 

 

 

As further representation detail, for the above test, the maximum, average, and minimum values 

randomly selected over the 1000 cases for probability were 0.9980, 0.5520, and 0.1003, respectively;  

the maximum, average, and minimum values for the ratio 𝑟 were 0.9989, 0.4683, and 0.0506, 

respectively. 
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C.1.1.2 CE Method versus Method Comparison Tests 

(1) Table_Interp vs. IE (mean zero):10000 samples (2000 for each of 5 fixed probability levels) 

 

Note: if above prob >=0.9, max difference is 0.05. 

(2) MC_Cov_sqrt vs. IE (mean zero):1000 samples 
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(3) MC_Cov_sqrt vs. IE (mean value arbitrary):1000 samples 

 

C.1.2 Spherical Error (SE) 

For a given sample, the error covariance matrix and mean-value (if not zero) were randomly computed 

as follows: 

The error covariance was randomly generated per sample about the mean-value as: 

𝐶𝑜𝑣𝑟𝑎𝑛𝑑𝑜𝑚 = 4 [
𝑢1 𝑢4√𝑢1 × 𝑢2 𝑢5√𝑢1 × 𝑢3

. 𝑢2 𝑢6√𝑢2 × 𝑢3

. . 𝑢3

], where u1, u2, and u3 are random and independent 

samples from a (0,1) uniform distribution, and u4, u5, and u6 are random and independent sample from 

a (-1,1) uniform distribution.  The generated covariance matrix also checked/guaranteed positive 

definite.  Also, the square root of the smallest to largest eigenvalue was also guaranteed/checked as 

𝑟 ≥0.00001, 0.02, and 0.10 for tests involving MC_Cov_sqrt, IE (mean zero), and IE (mean not zero), 

respectively. 

The corresponding mean-value is computed as �̅�𝑟𝑎𝑛𝑑𝑜𝑚 = 4  
𝑢7
𝑢8
𝑢9

 , where u7, u8, and u9 are random and 

independent samples from a (-1,1) uniform distribution. 
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C.1.2.1 SE Method Repeatability Tests 

(1) Table_Interp: not applicable 

(2) MC_Cov_sqrt:1000 samples and 50 perturbations per sample 
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(3)IE (mean zero):1000 samples and 10 perturbations per sample 

 

 

  



NGA.SIG.0026.03_1.0_ACCPRED 
 

 
124 

(4) IE (mean value arbitrary):1000 samples and 10 perturbations per sample 
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C.1.2.2 SE Method versus Method Comparison Tests 

(1) Table_Interp vs. IE (mean zero):1000 samples 

 
Note if p>=0.9, max is 0.05 

(2) MC_Cov_sqrt vs. IE (mean zero):1000 samples 
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(3) MC_Cov_sqrt vs. IE (mean value arbitrary):1000 samples 

 

C.1.3 Summary of Tests 

In the above Method Comparison tests, results were consistent with the repeatability tests for both 

methods involved – the difference was basically consistent with the repeatability test for the method 

with statistically larger computation errors. 

Regarding Method Repeatability tests, there were variations (on the order of a factor of 2 or 3) between 

Integral Equation repeatability test result subcases: mean value equals zero and mean value arbitrary.  

This was primarily due to limited statistical significance associated with the number of samples and 

perturbations.   (They were kept to reasonable numbers for reasonable test times.)  Thus, when 

summarizing results in the main body, the “worst” results were reported across mean-zero and mean-

not zero variations.   

Although not specifically shown in the above test results, during the various comparison test results, it 

became apparent that the solution for the Integral Equation Method did not always converge.  This 

problem occurred about  0.2 % of the  time when the mean-value was arbitrary, and where probability 

was allowed to vary within the interval [0.1,0.999}.  When convergence did not occur, the resultant 

relative error could be as large as 40%.  However, in virtually all cases, the problem could be detected by 

noting that the number of iterations in the MATLAB code equaled the (specified) maximum and/or the 

function code equaled more than twice the number of iterations.   
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C.1.4 Miscellaneous other Tests 

Two other categories of calculation error tests were performed: p=0.999 and LE Integration.  The former 

held the probability level fixed at the extreme high level, and was performed for both Table_Int versus IE 

(mean zero) and MC_Cov_sqrt repeatability.  Although the number of test samples were limited for 

convenience, test results were consistent with the previous test results where probability levels varied.   

The LE Integration test was for arbitrary mean values and provided results as good as for CE Integration 

and had no convergence issues. 

In addition to calculation error performance, timing results for all of the various methods were also 

tabulated with results summarized in Table 5.4.2.6-1 (CE_XX) and Table 5.4.3.5-1  (SE_XX).  

 

C.2 Complete Set of SE Interpolation Tables 

Assuming an appropriate digital copy of this document, the values in the following five tables can be 
copied by highlighting the desired cells and copying (right clicking and selecting copy or pressing Ctrl and 
C simultaneously).  Then pasting (right clicking and selecting paste or pressing Ctrl and V simultaneously) 
where desired.)  This allows for direct insertion into appropriate pseudo-code arrays/files. 
 

Table C.2-1: Spherical Error (SE) multiplier  𝑅(𝑝 = 0.5, 𝑟 , 𝑟2) versus ratios r1 and r2  

 

r1 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

r 2
 

0.00 0.6745 0.6763 0.6820 0.6916 0.7059 0.7254 0.7499 0.7779 0.8079 0.8389 0.8704 0.9021 0.9337 0.9651 0.9962 1.0271 1.0577 1.0880 1.1181 1.1479 1.1774 

0.05 0.6763 0.6782 0.6838 0.6934 0.7076 0.7271 0.7516 0.7795 0.8094 0.8404 0.8719 0.9035 0.9350 0.9664 0.9975 1.0283 1.0589 1.0891 1.1192 1.1489 1.1784 

0.10 0.6820 0.6838 0.6894 0.6989 0.7130 0.7324 0.7567 0.7844 0.8141 0.8449 0.8762 0.9077 0.9390 0.9703 1.0013 1.0320 1.0625 1.0926 1.1225 1.1522 1.1817 

0.15 0.6916 0.6934 0.6989 0.7084 0.7223 0.7414 0.7654 0.7927 0.8221 0.8526 0.8836 0.9147 0.9459 0.9768 1.0077 1.0381 1.0684 1.0984 1.1282 1.1578 1.1870 

0.20 0.7059 0.7076 0.7130 0.7223 0.7359 0.7546 0.7781 0.8048 0.8336 0.8636 0.8941 0.9248 0.9556 0.9862 1.0167 1.0469 1.0769 1.1067 1.1362 1.1655 1.1947 

0.25 0.7254 0.7271 0.7324 0.7414 0.7546 0.7727 0.7952 0.8211 0.8491 0.8783 0.9081 0.9382 0.9684 0.9986 1.0286 1.0584 1.0881 1.1174 1.1466 1.1756 1.2045 

0.30 0.7499 0.7516 0.7567 0.7654 0.7781 0.7952 0.8167 0.8414 0.8684 0.8966 0.9256 0.9549 0.9844 1.0140 1.0434 1.0728 1.1019 1.1309 1.1597 1.1883 1.2168 

0.35 0.7779 0.7795 0.7844 0.7927 0.8048 0.8211 0.8414 0.8651 0.8909 0.9181 0.9462 0.9748 1.0035 1.0324 1.0612 1.0899 1.1185 1.1470 1.1753 1.2035 1.2315 

0.40 0.8079 0.8094 0.8141 0.8221 0.8336 0.8491 0.8684 0.8909 0.9157 0.9420 0.9692 0.9970 1.0251 1.0533 1.0814 1.1096 1.1376 1.1656 1.1934 1.2211 1.2488 

0.45 0.8389 0.8404 0.8449 0.8526 0.8636 0.8783 0.8966 0.9181 0.9420 0.9675 0.9939 1.0210 1.0484 1.0760 1.1036 1.1313 1.1588 1.1863 1.2137 1.2409 1.2681 

0.50 0.8704 0.8719 0.8762 0.8836 0.8941 0.9081 0.9256 0.9462 0.9692 0.9939 1.0197 1.0462 1.0730 1.1002 1.1273 1.1545 1.1816 1.2086 1.2356 1.2625 1.2893 

0.55 0.9021 0.9035 0.9077 0.9147 0.9248 0.9382 0.9549 0.9748 0.9970 1.0210 1.0462 1.0722 1.0985 1.1251 1.1519 1.1788 1.2055 1.2322 1.2589 1.2854 1.3119 

0.60 0.9337 0.9350 0.9390 0.9459 0.9556 0.9684 0.9844 1.0035 1.0251 1.0484 1.0730 1.0985 1.1245 1.1508 1.1772 1.2037 1.2302 1.2567 1.2830 1.3093 1.3355 

0.65 0.9651 0.9664 0.9703 0.9768 0.9862 0.9986 1.0140 1.0324 1.0533 1.0760 1.1002 1.1251 1.1508 1.1767 1.2029 1.2291 1.2554 1.2817 1.3078 1.3339 1.3599 

0.70 0.9962 0.9975 1.0013 1.0077 1.0167 1.0286 1.0434 1.0612 1.0814 1.1036 1.1273 1.1519 1.1772 1.2029 1.2288 1.2549 1.2810 1.3070 1.3330 1.3590 1.3848 

0.75 1.0271 1.0283 1.0320 1.0381 1.0469 1.0584 1.0728 1.0899 1.1096 1.1313 1.1545 1.1788 1.2037 1.2291 1.2549 1.2807 1.3067 1.3325 1.3585 1.3843 1.4101 

0.80 1.0577 1.0589 1.0625 1.0684 1.0769 1.0881 1.1019 1.1185 1.1376 1.1588 1.1816 1.2055 1.2302 1.2554 1.2810 1.3067 1.3324 1.3582 1.3840 1.4098 1.4355 

0.85 1.0880 1.0891 1.0926 1.0984 1.1067 1.1174 1.1309 1.1470 1.1656 1.1863 1.2086 1.2322 1.2567 1.2817 1.3070 1.3325 1.3582 1.3840 1.4098 1.4356 1.4611 

0.90 1.1181 1.1192 1.1225 1.1282 1.1362 1.1466 1.1597 1.1753 1.1934 1.2137 1.2356 1.2589 1.2830 1.3078 1.3330 1.3585 1.3840 1.4098 1.4355 1.4612 1.4869 

0.95 1.1479 1.1489 1.1522 1.1578 1.1655 1.1756 1.1883 1.2035 1.2211 1.2409 1.2625 1.2854 1.3093 1.3339 1.3590 1.3843 1.4098 1.4356 1.4612 1.4869 1.5125 

1.00 1.1774 1.1784 1.1817 1.1870 1.1947 1.2045 1.2168 1.2315 1.2488 1.2681 1.2893 1.3119 1.3355 1.3599 1.3848 1.4101 1.4355 1.4611 1.4869 1.5125 1.5382 
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Table C.2-2: Spherical Error (SE) multiplier  𝑅(𝑝 = 0.9, 𝑟 , 𝑟2) versus ratios r1 and r2  

 

r1 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

r 2
 

0.00 1.6449 1.6456 1.6479 1.6518 1.6573 1.6646 1.6738 1.6852 1.6992 1.7163 1.7371 1.7621 1.7915 1.8251 1.8625 1.9034 1.9472 1.9936 2.0424 2.0932 2.1460 

0.05 1.6456 1.6464 1.6487 1.6525 1.6581 1.6654 1.6745 1.6860 1.6999 1.7170 1.7378 1.7628 1.7922 1.8258 1.8632 1.9040 1.9478 1.9942 2.0429 2.0938 2.1466 

0.10 1.6479 1.6487 1.6509 1.6548 1.6604 1.6676 1.6769 1.6882 1.7021 1.7192 1.7400 1.7650 1.7944 1.8279 1.8652 1.9060 1.9497 1.9961 2.0448 2.0956 2.1483 

0.15 1.6518 1.6525 1.6548 1.6587 1.6642 1.6714 1.6806 1.6920 1.7059 1.7229 1.7436 1.7686 1.7979 1.8314 1.8687 1.9094 1.9530 1.9993 2.0479 2.0987 2.1512 

0.20 1.6573 1.6581 1.6604 1.6642 1.6697 1.6769 1.6861 1.6974 1.7113 1.7282 1.7489 1.7738 1.8030 1.8364 1.8735 1.9141 1.9576 2.0039 2.0523 2.1029 2.1555 

0.25 1.6646 1.6654 1.6676 1.6714 1.6769 1.6841 1.6932 1.7045 1.7183 1.7352 1.7558 1.7806 1.8097 1.8429 1.8799 1.9204 1.9638 2.0098 2.0581 2.1086 2.1610 

0.30 1.6738 1.6745 1.6769 1.6806 1.6861 1.6932 1.7023 1.7135 1.7273 1.7441 1.7646 1.7892 1.8182 1.8513 1.8881 1.9283 1.9715 2.0173 2.0654 2.1156 2.1678 

0.35 1.6852 1.6860 1.6882 1.6920 1.6974 1.7045 1.7135 1.7247 1.7383 1.7550 1.7755 1.7999 1.8286 1.8614 1.8981 1.9380 1.9809 2.0265 2.0743 2.1243 2.1762 

0.40 1.6992 1.6999 1.7021 1.7059 1.7113 1.7183 1.7273 1.7383 1.7519 1.7685 1.7887 1.8130 1.8414 1.8740 1.9102 1.9498 1.9923 2.0375 2.0850 2.1347 2.1862 

0.45 1.7163 1.7170 1.7192 1.7229 1.7282 1.7352 1.7441 1.7550 1.7685 1.7849 1.8049 1.8289 1.8569 1.8890 1.9248 1.9639 2.0060 2.0506 2.0977 2.1469 2.1981 

0.50 1.7371 1.7378 1.7400 1.7436 1.7489 1.7558 1.7646 1.7755 1.7887 1.8049 1.8245 1.8481 1.8757 1.9071 1.9422 1.9807 2.0221 2.0663 2.1127 2.1614 2.2120 

0.55 1.7621 1.7628 1.7650 1.7686 1.7738 1.7806 1.7892 1.7999 1.8130 1.8289 1.8481 1.8710 1.8979 1.9287 1.9630 2.0007 2.0413 2.0847 2.1304 2.1783 2.2282 

0.60 1.7915 1.7922 1.7944 1.7979 1.8030 1.8097 1.8182 1.8286 1.8414 1.8569 1.8757 1.8979 1.9240 1.9539 1.9873 2.0240 2.0637 2.1061 2.1510 2.1980 2.2472 

0.65 1.8251 1.8258 1.8279 1.8314 1.8364 1.8429 1.8513 1.8614 1.8740 1.8890 1.9071 1.9287 1.9539 1.9827 2.0151 2.0507 2.0894 2.1308 2.1746 2.2207 2.2689 

0.70 1.8625 1.8632 1.8652 1.8687 1.8735 1.8799 1.8881 1.8981 1.9102 1.9248 1.9422 1.9630 1.9873 2.0151 2.0464 2.0809 2.1185 2.1587 2.2015 2.2464 2.2936 

0.75 1.9034 1.9040 1.9060 1.9094 1.9141 1.9204 1.9283 1.9380 1.9498 1.9639 1.9807 2.0007 2.0240 2.0507 2.0809 2.1143 2.1506 2.1898 2.2314 2.2753 2.3214 

0.80 1.9472 1.9478 1.9497 1.9530 1.9576 1.9638 1.9715 1.9809 1.9923 2.0060 2.0221 2.0413 2.0637 2.0894 2.1185 2.1506 2.1858 2.2237 2.2642 2.3070 2.3520 

0.85 1.9936 1.9942 1.9961 1.9993 2.0039 2.0098 2.0173 2.0265 2.0375 2.0506 2.0663 2.0847 2.1061 2.1308 2.1587 2.1898 2.2237 2.2605 2.2998 2.3415 2.3854 

0.90 2.0424 2.0429 2.0448 2.0479 2.0523 2.0581 2.0654 2.0743 2.0850 2.0977 2.1127 2.1304 2.1510 2.1746 2.2015 2.2314 2.2642 2.2998 2.3380 2.3786 2.4213 

0.95 2.0932 2.0938 2.0956 2.0987 2.1029 2.1086 2.1156 2.1243 2.1347 2.1469 2.1614 2.1783 2.1980 2.2207 2.2464 2.2753 2.3070 2.3415 2.3786 2.4180 2.4597 

1.00 2.1460 2.1466 2.1483 2.1512 2.1555 2.1610 2.1678 2.1762 2.1862 2.1981 2.2120 2.2282 2.2472 2.2689 2.2936 2.3214 2.3520 2.3854 2.4213 2.4597 2.5003 

 
 

Table C.2-3: Spherical Error (SE) multiplier  𝑅(𝑝 = 0.95, 𝑟 , 𝑟2) versus ratios r1 and r2 

 

r1 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

r 2
 

0.00 1.9600 1.9606 1.9625 1.9658 1.9704 1.9765 1.9842 1.9937 2.0051 2.0190 2.0359 2.0564 2.0813 2.1111 2.1460 2.1858 2.2303 2.2791 2.3318 2.3881 2.4478 

0.05 1.9606 1.9612 1.9632 1.9664 1.9711 1.9771 1.9848 1.9943 2.0058 2.0197 2.0365 2.0570 2.0819 2.1117 2.1466 2.1864 2.2309 2.2796 2.3324 2.3887 2.4482 

0.10 1.9625 1.9632 1.9651 1.9683 1.9729 1.9791 1.9867 1.9962 2.0077 2.0215 2.0383 2.0589 2.0837 2.1135 2.1483 2.1881 2.2325 2.2813 2.3339 2.3902 2.4498 

0.15 1.9658 1.9664 1.9683 1.9716 1.9762 1.9823 1.9899 1.9994 2.0108 2.0247 2.0415 2.0620 2.0868 2.1165 2.1513 2.1910 2.2354 2.2841 2.3367 2.3929 2.4524 

0.20 1.9704 1.9711 1.9729 1.9762 1.9808 1.9868 1.9945 2.0039 2.0153 2.0292 2.0459 2.0664 2.0912 2.1208 2.1555 2.1952 2.2394 2.2880 2.3406 2.3967 2.4561 

0.25 1.9765 1.9771 1.9791 1.9823 1.9868 1.9929 2.0005 2.0099 2.0213 2.0351 2.0518 2.0722 2.0969 2.1265 2.1611 2.2006 2.2448 2.2932 2.3457 2.4016 2.4609 

0.30 1.9842 1.9848 1.9867 1.9899 1.9945 2.0005 2.0081 2.0175 2.0288 2.0425 2.0592 2.0795 2.1041 2.1336 2.1682 2.2075 2.2515 2.2998 2.3520 2.4078 2.4669 

0.35 1.9937 1.9943 1.9962 1.9994 2.0039 2.0099 2.0175 2.0268 2.0381 2.0518 2.0683 2.0885 2.1131 2.1425 2.1767 2.2160 2.2598 2.3079 2.3598 2.4154 2.4743 

0.40 2.0051 2.0058 2.0077 2.0108 2.0153 2.0213 2.0288 2.0381 2.0493 2.0630 2.0795 2.0995 2.1239 2.1531 2.1873 2.2262 2.2697 2.3175 2.3692 2.4246 2.4831 

0.45 2.0190 2.0197 2.0215 2.0247 2.0292 2.0351 2.0425 2.0518 2.0630 2.0764 2.0929 2.1129 2.1371 2.1660 2.1999 2.2385 2.2816 2.3291 2.3804 2.4353 2.4935 

0.50 2.0359 2.0365 2.0383 2.0415 2.0459 2.0518 2.0592 2.0683 2.0795 2.0929 2.1092 2.1290 2.1529 2.1816 2.2150 2.2532 2.2959 2.3429 2.3936 2.4481 2.5058 

0.55 2.0564 2.0570 2.0589 2.0620 2.0664 2.0722 2.0795 2.0885 2.0995 2.1129 2.1290 2.1485 2.1722 2.2004 2.2333 2.2708 2.3129 2.3592 2.4093 2.4631 2.5202 

0.60 2.0813 2.0819 2.0837 2.0868 2.0912 2.0969 2.1041 2.1131 2.1239 2.1371 2.1529 2.1722 2.1953 2.2229 2.2551 2.2919 2.3332 2.3786 2.4279 2.4809 2.5371 

0.65 2.1111 2.1117 2.1135 2.1165 2.1208 2.1265 2.1336 2.1425 2.1531 2.1660 2.1816 2.2004 2.2229 2.2497 2.2810 2.3168 2.3570 2.4014 2.4497 2.5017 2.5570 

0.70 2.1460 2.1466 2.1483 2.1513 2.1555 2.1611 2.1682 2.1767 2.1873 2.1999 2.2150 2.2333 2.2551 2.2810 2.3112 2.3460 2.3850 2.4281 2.4752 2.5259 2.5801 

0.75 2.1858 2.1864 2.1881 2.1910 2.1952 2.2006 2.2075 2.2160 2.2262 2.2385 2.2532 2.2708 2.2919 2.3168 2.3460 2.3794 2.4170 2.4589 2.5046 2.5539 2.6067 

0.80 2.2303 2.2309 2.2325 2.2354 2.2394 2.2448 2.2515 2.2598 2.2697 2.2816 2.2959 2.3129 2.3332 2.3570 2.3850 2.4170 2.4533 2.4937 2.5379 2.5858 2.6371 

0.85 2.2791 2.2796 2.2813 2.2841 2.2880 2.2932 2.2998 2.3079 2.3175 2.3291 2.3429 2.3592 2.3786 2.4014 2.4281 2.4589 2.4937 2.5325 2.5751 2.6214 2.6713 

0.90 2.3318 2.3323 2.3339 2.3367 2.3406 2.3457 2.3520 2.3598 2.3692 2.3804 2.3936 2.4093 2.4279 2.4497 2.4752 2.5046 2.5379 2.5751 2.6162 2.6609 2.7091 

0.95 2.3881 2.3887 2.3902 2.3929 2.3967 2.4016 2.4078 2.4154 2.4246 2.4353 2.4481 2.4631 2.4809 2.5017 2.5259 2.5539 2.5858 2.6214 2.6609 2.7040 2.7506 

1.00 2.4478 2.4482 2.4498 2.4524 2.4561 2.4609 2.4669 2.4743 2.4831 2.4935 2.5058 2.5202 2.5371 2.5570 2.5801 2.6067 2.6371 2.6713 2.7091 2.7506 2.7955 
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Table C.2-4: Spherical Error (SE) multiplier  𝑅(𝑝 = 0.99, 𝑟 , 𝑟2) versus ratios r1 and r2  

 

r1 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

r 2
 

0.00 2.5758 2.5763 2.5778 2.5803 2.5838 2.5884 2.5942 2.6013 2.6099 2.6203 2.6326 2.6474 2.6653 2.6875 2.7151 2.7492 2.7907 2.8401 2.8974 2.9625 3.0349 

0.05 2.5763 2.5768 2.5783 2.5808 2.5842 2.5888 2.5947 2.6018 2.6105 2.6207 2.6331 2.6479 2.6658 2.6880 2.7155 2.7496 2.7912 2.8405 2.8979 2.9629 3.0353 

0.10 2.5778 2.5783 2.5798 2.5822 2.5857 2.5903 2.5962 2.6033 2.6118 2.6222 2.6345 2.6493 2.6672 2.6894 2.7169 2.7510 2.7925 2.8418 2.8992 2.9642 3.0365 

0.15 2.5803 2.5808 2.5822 2.5847 2.5882 2.5928 2.5986 2.6057 2.6143 2.6246 2.6369 2.6516 2.6696 2.6917 2.7193 2.7533 2.7948 2.8441 2.9014 2.9664 3.0386 

0.20 2.5838 2.5842 2.5857 2.5882 2.5917 2.5963 2.6021 2.6092 2.6178 2.6281 2.6403 2.6551 2.6730 2.6951 2.7226 2.7566 2.7980 2.8473 2.9045 2.9694 3.0416 

0.25 2.5884 2.5888 2.5903 2.5928 2.5963 2.6008 2.6067 2.6138 2.6224 2.6326 2.6448 2.6595 2.6775 2.6995 2.7270 2.7609 2.8023 2.8515 2.9086 2.9734 3.0454 

0.30 2.5942 2.5947 2.5962 2.5986 2.6021 2.6067 2.6125 2.6195 2.6281 2.6383 2.6505 2.6652 2.6831 2.7051 2.7325 2.7664 2.8077 2.8567 2.9137 2.9784 3.0503 

0.35 2.6013 2.6018 2.6033 2.6057 2.6092 2.6138 2.6195 2.6266 2.6351 2.6453 2.6575 2.6722 2.6900 2.7120 2.7393 2.7731 2.8143 2.8632 2.9200 2.9845 3.0563 

0.40 2.6099 2.6105 2.6118 2.6143 2.6178 2.6224 2.6281 2.6351 2.6436 2.6539 2.6660 2.6806 2.6984 2.7202 2.7475 2.7812 2.8222 2.8710 2.9276 2.9919 3.0635 

0.45 2.6203 2.6207 2.6222 2.6246 2.6281 2.6326 2.6383 2.6453 2.6539 2.6639 2.6761 2.6906 2.7083 2.7302 2.7573 2.7909 2.8317 2.8803 2.9367 3.0007 3.0719 

0.50 2.6326 2.6331 2.6345 2.6369 2.6403 2.6448 2.6505 2.6575 2.6660 2.6761 2.6882 2.7027 2.7203 2.7421 2.7691 2.8024 2.8431 2.8913 2.9474 3.0110 3.0819 

0.55 2.6474 2.6479 2.6493 2.6516 2.6551 2.6595 2.6652 2.6722 2.6806 2.6906 2.7027 2.7171 2.7347 2.7563 2.7831 2.8163 2.8566 2.9045 2.9601 3.0233 3.0937 

0.60 2.6653 2.6658 2.6672 2.6696 2.6730 2.6775 2.6831 2.6900 2.6984 2.7083 2.7203 2.7347 2.7522 2.7736 2.8003 2.8330 2.8729 2.9203 2.9753 3.0378 3.1075 

0.65 2.6875 2.6880 2.6894 2.6917 2.6951 2.6995 2.7051 2.7120 2.7202 2.7302 2.7421 2.7563 2.7736 2.7949 2.8212 2.8535 2.8927 2.9393 2.9935 3.0552 3.1240 

0.70 2.7151 2.7155 2.7169 2.7193 2.7226 2.7270 2.7325 2.7393 2.7475 2.7573 2.7691 2.7831 2.8003 2.8212 2.8469 2.8786 2.9170 2.9625 3.0156 3.0760 3.1436 

0.75 2.7492 2.7496 2.7510 2.7533 2.7566 2.7609 2.7664 2.7731 2.7812 2.7909 2.8024 2.8163 2.8330 2.8535 2.8786 2.9093 2.9465 2.9908 3.0423 3.1012 3.1672 

0.80 2.7907 2.7912 2.7925 2.7948 2.7980 2.8023 2.8077 2.8143 2.8222 2.8317 2.8431 2.8566 2.8729 2.8927 2.9170 2.9465 2.9823 3.0248 3.0746 3.1316 3.1956 

0.85 2.8401 2.8405 2.8418 2.8441 2.8473 2.8515 2.8567 2.8632 2.8710 2.8803 2.8913 2.9045 2.9203 2.9393 2.9625 2.9908 3.0248 3.0655 3.1131 3.1677 3.2294 

0.90 2.8974 2.8978 2.8992 2.9014 2.9045 2.9086 2.9137 2.9200 2.9276 2.9367 2.9474 2.9601 2.9753 2.9935 3.0156 3.0423 3.0746 3.1131 3.1582 3.2102 3.2691 

0.95 2.9625 2.9629 2.9642 2.9664 2.9694 2.9734 2.9784 2.9845 2.9919 3.0007 3.0110 3.0233 3.0378 3.0552 3.0760 3.1012 3.1316 3.1677 3.2102 3.2594 3.3154 

1.00 3.0349 3.0353 3.0365 3.0386 3.0416 3.0454 3.0503 3.0563 3.0635 3.0719 3.0819 3.0936 3.1075 3.1240 3.1436 3.1672 3.1956 3.2294 3.2691 3.3154 3.3682 

 

 

Table C.2-5: Spherical Error (SE) multiplier  𝑅(𝑝 = 0.999, 𝑟 , 𝑟2) versus ratios r1 and r2  

 

r1 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

r 2
 

0.00 3.2905 3.2910 3.2921 3.2940 3.2967 3.3003 3.3049 3.3104 3.3172 3.3252 3.3346 3.3459 3.3595 3.3759 3.3965 3.4227 3.4570 3.5018 3.5594 3.6310 3.7169 

0.05 3.2910 3.2913 3.2924 3.2944 3.2972 3.3007 3.3053 3.3108 3.3175 3.3255 3.3350 3.3463 3.3599 3.3763 3.3968 3.4231 3.4573 3.5022 3.5598 3.6314 3.7173 

0.10 3.2921 3.2924 3.2936 3.2955 3.2982 3.3019 3.3064 3.3120 3.3182 3.3267 3.3361 3.3475 3.3610 3.3774 3.3979 3.4242 3.4584 3.5032 3.5608 3.6324 3.7183 

0.15 3.2940 3.2944 3.2955 3.2975 3.3002 3.3038 3.3084 3.3139 3.3206 3.3285 3.3380 3.3493 3.3629 3.3793 3.3998 3.4260 3.4603 3.5050 3.5626 3.6341 3.7199 

0.20 3.2967 3.2972 3.2982 3.3002 3.3029 3.3065 3.3111 3.3166 3.3233 3.3313 3.3407 3.3520 3.3655 3.3820 3.4025 3.4287 3.4629 3.5076 3.5651 3.6366 3.7224 

0.25 3.3003 3.3007 3.3019 3.3038 3.3065 3.3101 3.3147 3.3202 3.3269 3.3348 3.3444 3.3556 3.3691 3.3856 3.4060 3.4322 3.4663 3.5111 3.5685 3.6399 3.7256 

0.30 3.3049 3.3052 3.3064 3.3083 3.3111 3.3147 3.3192 3.3247 3.3314 3.3394 3.3488 3.3600 3.3736 3.3900 3.4104 3.4365 3.4707 3.5153 3.5726 3.6440 3.7296 

0.35 3.3104 3.3108 3.3120 3.3139 3.3166 3.3202 3.3247 3.3303 3.3370 3.3449 3.3543 3.3655 3.3790 3.3954 3.4158 3.4419 3.4760 3.5205 3.5778 3.6490 3.7344 

0.40 3.3172 3.3174 3.3187 3.3205 3.3233 3.3269 3.3314 3.3370 3.3436 3.3515 3.3609 3.3721 3.3856 3.4019 3.4223 3.4483 3.4823 3.5268 3.5840 3.6550 3.7403 

0.45 3.3252 3.3254 3.3267 3.3286 3.3313 3.3348 3.3394 3.3449 3.3515 3.3594 3.3688 3.3800 3.3934 3.4097 3.4301 3.4560 3.4900 3.5343 3.5913 3.6622 3.7473 

0.50 3.3346 3.3349 3.3361 3.3380 3.3407 3.3444 3.3488 3.3543 3.3609 3.3688 3.3782 3.3894 3.4027 3.4190 3.4393 3.4652 3.4990 3.5433 3.6001 3.6707 3.7554 

0.55 3.3459 3.3463 3.3474 3.3493 3.3520 3.3556 3.3600 3.3655 3.3721 3.3800 3.3894 3.4004 3.4138 3.4301 3.4503 3.4761 3.5099 3.5539 3.6105 3.6807 3.7651 

0.60 3.3595 3.3598 3.3609 3.3629 3.3655 3.3691 3.3736 3.3790 3.3856 3.3934 3.4027 3.4138 3.4271 3.4433 3.4635 3.4892 3.5228 3.5667 3.6228 3.6927 3.7765 

0.65 3.3759 3.3763 3.3774 3.3793 3.3819 3.3856 3.3900 3.3954 3.4019 3.4097 3.4190 3.4301 3.4433 3.4594 3.4795 3.5052 3.5386 3.5821 3.6378 3.7070 3.7901 

0.70 3.3965 3.3966 3.3979 3.3998 3.4024 3.4060 3.4104 3.4158 3.4223 3.4301 3.4393 3.4503 3.4635 3.4795 3.4995 3.5250 3.5581 3.6011 3.6561 3.7244 3.8064 

0.75 3.4227 3.4230 3.4242 3.4260 3.4286 3.4322 3.4365 3.4419 3.4483 3.4561 3.4652 3.4761 3.4892 3.5052 3.5248 3.5502 3.5827 3.6250 3.6789 3.7458 3.8264 

0.80 3.4570 3.4573 3.4584 3.4602 3.4628 3.4663 3.4706 3.4760 3.4823 3.4900 3.4990 3.5099 3.5228 3.5386 3.5580 3.5827 3.6145 3.6555 3.7078 3.7729 3.8512 

0.85 3.5018 3.5022 3.5032 3.5051 3.5076 3.5111 3.5153 3.5205 3.5268 3.5343 3.5433 3.5539 3.5667 3.5821 3.6008 3.6250 3.6555 3.6948 3.7448 3.8071 3.8826 

0.90 3.5594 3.5597 3.5608 3.5626 3.5651 3.5684 3.5726 3.5778 3.5840 3.5913 3.6001 3.6105 3.6228 3.6377 3.6560 3.6789 3.7078 3.7448 3.7919 3.8507 3.9223 

0.95 3.6310 3.6313 3.6323 3.6341 3.6367 3.6399 3.6440 3.6490 3.6550 3.6622 3.6707 3.6807 3.6927 3.7070 3.7244 3.7458 3.7729 3.8071 3.8507 3.9053 3.9720 

1.00 3.7169 3.7173 3.7182 3.7200 3.7224 3.7256 3.7296 3.7344 3.7403 3.7473 3.7554 3.7651 3.7765 3.7901 3.8064 3.8264 3.8512 3.8826 3.9223 3.9720 4.0332 
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C.3 Pseudo-code    

The pseudo-code (MATLAB) was run on the following “notebook” computer: Dell Precision T5810 

(desktop) with Intel® Xeon® CPU E5-1607 v3 @ 3.10GHz and 16GB of RAM.  The Computer has four 

cores, but programs are single threaded, i.e., no multi-threading was implemented.  MATLAB R2015a 

(Version 8.5.0.197613) was used. 

C.3.1 Pseudo-code for LE 

Algorithm (5.4.1.1-2), i.e., the second algorithm listed in Section 5.4.1.1: 

function LEcal = LEerf(covar,prob) 
%%%%% Calculates linear error distance analytically 
%%%%%  
%%%%% Inputs: covar - 1x1 variance value 
%%%%%         prob - probability that linear distance will be calculated to 
%%%%%  
%%%%% Outputs: LEcal - calculated linear error distance 

  
%%%%% Uses error function inverse to calculate linear error distance 
LEcal   = sqrt(covar)*sqrt(2)*erfinv(prob); 
end                                % ends LE erf function 

 

Algorithm (5.4.1.1-3): 

function LEcal = LEintegral(covar,mCoord,prob) 
%%%%% Calculates linear error distance analytically 
%%%%%  
%%%%% Inputs: covar - 1x1 variance value 
%%%%%         mCoord - 1x1 mean coordinate of error 
%%%%%         prob - probability that linear distance will be calculated to 
%%%%%  
%%%%% Outputs: LEcal - calculated linear error distance 

  
%%%%% Get inital very crude approximation 
if prob > .95                       % checks probability value 
    LEapprox    = 1.96*sqrt(covar); % approximation from variance value 
elseif prob <=0.95 && prob > .5     % checks probability value 
    LEapprox    = 1*sqrt(covar);    % approximation from variance value 
else                                % checks probability value 
    LEapprox    = .5*sqrt(covar);   % approximation from variance value 
end                                 % ends loop checking variance value 
LEapprox    = abs(mCoord)+LEapprox; % updates approximation 

  
%%%%% Calculate error radius 
% function handle for determining distance value 
initD   = @(D) (LEint(covar,mCoord,D)-prob)^2; 
% finds local minimum for solution of linear error distance 
LEcal   = fminsearch(initD,LEapprox); 
end                                % ends LE analytical function 

  
function LErad = LEint(covar,mCoord,D) 
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%%%%% Returns the integral of the bivariate gaussian pdf with Mean mCoord 
%%%%% and Covariance covar about the Mean bounded by the Distance D 
%%%%%  
%%%%% Inputs: covar - 1x1 variance value 
%%%%%         mCoord - 1x1 mean coordinate of error 
%%%%%         D - linear error distance 
%%%%%  
%%%%% Outputs: LEint – evaluated integral at current distance D 

  
%%%%% Function handle for the gaussian pdf 1D exponent 
expMult = @(z) (-1/2)*((z-mCoord).^2)/covar; 

  
%%%%% Function handle for the gaussian pdf equation to be integrated 
guasEq  = @(z) 1/(sqrt(2*pi)*sqrt(covar))*exp(expMult(z)); 

  
%%%%% Uses MATLAB function to integrate 
LErad   = integral(guasEq,-D,D); 
end                                 % ends LEint function 

 

C.3.2 Pseudo-code for CE 

Algorithm (5.4.2.3-1), i.e. the first algorithm listed in Section 5.4.2.3: 
function CEcal = CEtableV2(covar,prob) 
%%%%% Interpolates multiplier from table 
%%%%%  
%%%%% Inputs: covar - 2x2 covariance matrix 
%%%%%         prob - probability at which multiplier will be calculated 
%%%%%  
%%%%% Outputs: tableVal - interpolated multiplier from table 

  
%%%%% Table of values for CE interpolation 
CE  = [0.6745   1.6449  1.9600  2.5758  3.2905 
       0.6763   1.6456  1.9606  2.5763  3.2910 
       0.6820   1.6479  1.9625  2.5778  3.2921 
       0.6916   1.6518  1.9658  2.5803  3.2940 
       0.7059   1.6573  1.9704  2.5838  3.2967 
       0.7254   1.6646  1.9765  2.5884  3.3003 
       0.7499   1.6738  1.9842  2.5942  3.3049 
       0.7779   1.6852  1.9937  2.6013  3.3104 
       0.8079   1.6992  2.0051  2.6099  3.3172 
       0.8389   1.7163  2.0190  2.6203  3.3252 
       0.8704   1.7371  2.0359  2.6326  3.3346 
       0.9021   1.7621  2.0564  2.6474  3.3459 
       0.9337   1.7915  2.0813  2.6653  3.3595 
       0.9651   1.8251  2.1111  2.6875  3.3759 
       0.9962   1.8625  2.1460  2.7151  3.3965 
       1.0271   1.9034  2.1858  2.7492  3.4227 
       1.0577   1.9472  2.2303  2.7907  3.4570 
       1.0880   1.9936  2.2791  2.8401  3.5018 
       1.1181   2.0424  2.3318  2.8974  3.5594 
       1.1479   2.0932  2.3881  2.9625  3.6310 
       1.1774   2.1460  2.4478  3.0349  3.7169]; 
 %%%%% Checks entered probability to determine column of table to use 
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if prob == .5                               % checks entered probability 
    CEuse   = CE(:,1);                      % defines part of table to use 
elseif prob == .9                           % checks entered probability 
    CEuse   = CE(:,2);                      % defines part of table to use 
elseif prob == .95                          % checks entered probability 
    CEuse   = CE(:,3);                      % defines part of table to use 
elseif prob == .99                          % checks entered probability 
    CEuse   = CE(:,4);                      % defines part of table to use 
elseif prob == .999                         % checks entered probability 
    CEuse   = CE(:,5);                      % defines part of table to use 
else                                        % checks entered probability 
    fprintf('Entered probability is not one of the options for Table 

 Interpolation.\n') 
    quit                                    % quits program 
end                                         % ends loop checking probability 

  
eigVal  = sort(eig(covar));                 % calcs covariance eigen values 
if eigVal(1) <= 0                           % checks minimum eigen value 
    fprintf('Entered covariance matrix is not positive definite.\n') 
    quit                                    % quits program 
end 
ratio   = sqrt(eigVal(1)/eigVal(2));        % ratio of eigen values 

  
tableVal = interp1(0:.05:1,CEuse,ratio); % linear interpolation from table 

  
CEcal   = sqrt(eigVal(2))*tableVal;         % calcs CE radius 
end                                         % ends function 

 

Algorithm (5.4.2.3-2): 

function CEcal = CECovSqrt(covar,mCoord,prob) 
%%%%% Calculates circular error radius using covariance square root 
%%%%% magnitude ordering 
%%%%%  
%%%%% Inputs: covar - 2x2 covariance matrix 
%%%%%         mCoord - 2x1 mean coordinate of errors 
%%%%%         prob - probability that circular radius will be calculated to 
%%%%%  
%%%%% Outputs: CEcal - calculated circular error radius 

  
%%%%% Check entered probability 
if prob < 0.1 
    fprintf('Entered probability is smaller than recommended limit.\n') 
end 

  
%%%%% Check eigen value ratio 
eigVal  = sort(eig(covar)); 
if eigVal(1) <= 0 
    fprintf('Entered covariance matrix is not positive definite.\n') 
    quit 
elseif sqrt(eigVal(1)/eigVal(2)) < 0.0001 
    fprintf('Eigen value ratio is smaller than recommended limit.\n') 
end 
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numSamp = 1e6;                      % number of samples to be evaluated 
X       = sqrtm(covar)*randn(2,numSamp);    % matrix of random samples 
X       = X+mCoord*ones(1,numSamp); % translates random samples by mean value 
mag     = sort(sum(X.^2));          % sorted magnitude of samples from origin 
numProb = floor(numSamp*prob); % number of samples for probability 

CEcal   = sum(sqrt(mag(numProb:numProb+1)))/2;  % circular radius 

end                                         % ends function 

 

Algorithm (5.4.2.3-3): 

function [CEcal,output] = CEintegral(covar,mCoord,prob) 
%%%%% Calculates circular error radius analytically 
%%%%%  
%%%%% Inputs: covar - 2x2 covariance matrix 
%%%%%         mCoord - 2x1 mean coordinate of errors 
%%%%%         prob - probability that spherical radius will be calculated to 
%%%%%  
%%%%% Outputs: CEcal - calculated circular error radius 

  
%%%%% Convert covariance to eigen value space 
[eigVec,covar]  = svd(covar); 
mCoord          = transpose(eigVec)*mCoord; 

  
%%%%% Get inital very crude approximation 
if prob > .95                                   % checks probability value 
    CEapprox    = 2.25*sqrt(mean(diag(covar))); % approximation from mean 
elseif prob <=0.95 && prob > .5                 % checks probability value 
    CEapprox    = 1.25*sqrt(mean(diag(covar))); % approximation from mean 
else                                            % action based on probability 
    CEapprox    = .5*sqrt(mean(diag(covar)));   % approximation from mean 
end                                             % ends loop checking prob 
CEapprox    = sqrt(sum(mCoord.^2))+CEapprox;    % updates approximation 

  
%%%%% Calculate error radius 
initR   = @(R) (CEint(covar,mCoord,R)-prob)^2;  % function handle 

  
%%%%% Sets maximum number of iterations for search function. 
%%%%% Number of iterations could be optimized. 
if prob < .95                           % checks probability 
    opt     = optimset('MaxIter',20);   % option for minimization function 
else                                    % checks probability 
    opt = optimset('MaxIter',22);       % option for minimization function 
end                                     % ends loop checking probability 
[CEcal(1,1),~,~,output] = fminsearch(initR,CEapprox,opt);   % finds radius 
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%%%%% Prints warning statements about results based on iteration and 
%%%%% function counts. 
if output.iterations == 20 && prob < .95 
    fprintf('Iteration limit was reached.  Result may not be valid.\n') 
elseif output.iterations == 22 
    fprintf('Iteration limit was reached.  Result may not be valid.\n') 
elseif output.funcCount > 2*output.iterations 
    fprintf('Function count is greater than twice the iteration count.  ') 
    fprintf('Result most like not valid.\n') 
end 
end                        % ends CE integral function 

  
function CErad = CEint(covar,mCoord,R) 
%%%%% Returns the integral of the bivariate Gaussian pdf with Mean mCoord 
%%%%% and Covariance covar about the Mean bounded by the circle with Radius R 
%%%%%  
%%%%% Inputs: covar - 2x2 covariance matrix 
%%%%%         mCoord - 2x1 mean coordinate of errors 
%%%%%         R - radius of circular error 
%%%%%  
%%%%% Outputs: CEint – evaluated integral at current radius R 

  
detCov  = det(covar);  % determinate of covariance matrix 
invCov  = inv(covar);         % inverse of covariance matrix 

  
%%%%% Function handle for the Gaussian pdf 2D exponent 
expMult = @(x,y) invCov(1,1)*(x-mCoord(1)).^2+... 
                 2*invCov(1,2)*(x-mCoord(1)).*(y-mCoord(2))+... 
                 invCov(2,2)*(y-mCoord(2)).^2; 

  
%%%%% Function handle for the Gaussian pdf equation to be integrated 
guasEq  = @(x,y) 1/((2*pi)*sqrt(detCov))*exp(-expMult(x,y)/2); 

  
%%%%% Function handles for integration limits 
ymin    = @(x) -sqrt(R^2-x.^2); % function for lower y limit 
ymax    = @(x)  sqrt(R^2-x.^2);     % function for upper y limit 

  
%%%%% Uses MATLAB function to integrate across the two variables 
CErad   = integral2(guasEq,-R,R,ymin,ymax); 
end                    % ends CEint function 
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C.3.3 Pseudo-code for SE 

Algorithm (5.4.3.3-1), i.e., first algorithm listed in Section 5.4.3.3: 

function SEcal = SEtableV2(covar,prob) 
%%%%% Interpolates multiplier from table 
%%%%%  
%%%%% Inputs: covar - 3x3 covariance matrix 
%%%%%         prob - probability at which multiplier will be calculated 
%%%%%  
%%%%% Outputs: SEcal - calculated SE radius value 

  
%%%%% Tables of values for SE interpolation 
SE50    = []; 
SE90    = []; 
SE95    = []; 
SE99    = []; 
SE999   = []; 

  
%%%%% Checks entered probability to determine column of table to use 
if prob == .5                               % checks entered probability 
    SEuse   = SE50;                         % defines part of table to use 
elseif prob == .9                           % checks entered probability 
    SEuse   = SE90;                         % defines part of table to use 
elseif prob == .95                          % checks entered probability 
    SEuse   = SE95;                         % defines part of table to use 
elseif prob == .99                          % checks entered probability 
    SEuse   = SE99;                         % defines part of table to use 
elseif prob == .999                         % checks entered probability 
    SEuse   = SE999;                        % defines part of table to use 
else                                        % checks entered probability 
    fprintf('Entered probability is not one of the options for Table 

Iterpolation.\n') 
    quit                                    % quits program 
end                                         % ends loop checking probability 

  
eigVal  = sort(eig(covar));                 % calc covariance eigen values 
if eigVal(1) <= 0                           % checks min eigen value 
    fprintf('Entered covariance matrix is not positive definite.\n') 
    quit                                    % quits program 
end                                         % ends loop checking eigen value 
r1      = sqrt(eigVal(2)/eigVal(3));        % ratio of eigen values 
r2      = sqrt(eigVal(1)/eigVal(3));        % ratio of eigen values 

  
rcVal   = 0:.05:1;                          % table sample points 

tabVal  = interp2(rcVal,rcVal,SEuse,r1,r2); % bi-linear interpolation 

  
SEcal   = sqrt(eigVal(3))*tabVal;           % calcs SE radius value 
end                                         % ends function 
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Algorithm (5.4.3.3-2): 

function SEcal = SECovSqrt(covar,mCoord,prob) 
%%%%% Calculates spherical error radius using covariance square root 
%%%%% magnitude ordering 
%%%%%  
%%%%% Inputs: covar - 3x3 covariance matrix 
%%%%%         mCoord - 3x1 mean coordinate of errors 
%%%%%         prob - probability that spherical radius will be calculated to 
%%%%%  
%%%%% Outputs: SEcal - calculated spherical error radius 

  
%%%%% Check entered probability 
if prob < 0.1 
    fprintf('Entered probability is smaller than allowed limit.\n') 
    quit 
end 

  
%%%%% Check eigen value ratio 
eigVal  = sort(eig(covar)); 
if eigVal(1) <= 0 
    fprintf('Entered covariance matrix is not positive definite.\n') 
    quit 
elseif sqrt(eigVal(1)/eigVal(3)) < 0.0001 

fprintf('Smallest Eigen value ratio is smaller than recommended limit.\n') 
end 

  
numSamp = 1e6;                 % number of samples to be evaluated 
X       = sqrtm(covar)*randn(3,numSamp); % matrix of random samples 
X       = X+mCoord*ones(1,numSamp); % translates random samples by mean value 
mag     = sort(sum(X.^2));          % sorted magnitude of samples from orgin 
numProb = floor(numSamp*prob);      % number of samples for current prob 
SEcal   = sum(sqrt(mag(numProb:numProb+1)))/2;  % spherical radius 
end                                             % ends function 

 

Algorithm (5.4.3.3-2): 

function [SEcal,output] = SEintegral(covar,mCoord,prob) 
%%%%% Calculates spherical error radius analytically 
%%%%%  
%%%%% Inputs: covar - 3x3 covariance matrix 
%%%%%         mCoord - 3x1 mean coordinate of errors 
%%%%%         prob - probability that spherical radius will be calculated to 
%%%%%  
%%%%% Outputs: SEcal - calculated spherical error radius 

  
%%%%% Convert covariance to eigen value space 
[e1,covar]  = svd(covar); 
mCoord      = transpose(e1)*mCoord; 
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%%%%% Get initial very crude approximation 
if prob > .95                                   % checks probability value 
    SEapprox    = 3*sqrt(mean(diag(covar))); % approximation 
elseif prob <=0.95 && prob > .5                 % checks probability value 
    SEapprox    = 2*sqrt(mean(diag(covar)));    % approximation 
else                                            % checks probability value 
    SEapprox    = sqrt(mean(diag(covar)));      % approximation 
end                                             % ends loop 
SEapprox    = sqrt(sum(mCoord.^2))+SEapprox;    % updates approximation 

  
%%%%% Calculate error radius 
initR   = @(R) (SEint(covar,mCoord,R)-prob)^2; 

  
%%%%% Sets maximum number of iterations for search function. 
%%%%% Number of iterations could be optimized. 
if prob < .95                           % checks probability 
    opt     = optimset('MaxIter',20);   % option for minimization function 
else                                    % checks probability 
    opt = optimset('MaxIter',22);       % option for minimization function 
end                                     % ends loop checking probability 

  
[SEcal(1,1),~,~,output] = fminsearch(initR,SEapprox,opt); % spherical radius 

  
%%%%% Prints warning statements about results based on iteration and 
%%%%% function counts. 
if output.iterations == 20 && prob < .95 
    fprintf('Iteration limit was reached.  Result may not be valid.\n') 
elseif output.iterations == 22 
    fprintf('Iteration limit was reached.  Result may not be valid.\n') 
elseif output.funcCount > 2*output.iterations 
    fprintf('Function count is greater than twice the iteration count.  ') 
    fprintf('Result most like not valid.\n') 
end 
end                                % ends SE analytical function 

  
function SEint = SEint(covar,mCoord,R) 
%%%%% Returns the integral of the bivariate gaussian pdf with Mean mCoord 
%%%%% and Covariance covar about the Mean bounded by the circle with Radius R 
%%%%%  
%%%%% Inputs: covar - 3x3 covariance matrix 
%%%%%         mCoord - 3x1 mean coordinate of errors 
%%%%%         R - radius of spherical error 
%%%%%  
%%%%% Outputs: SEcal – evaluated integral at current radius R 

  
detCov  = det(covar);             % determinate of covariance matrix 
invCov  = inv(covar);               % inverse of covariance matrix 

  
%%%%% Function handle for the gaussian pdf 3D exponent 
expMult = @(x,y,z) invCov(1,1)*(x-mCoord(1)).^2+... 
                   2*invCov(1,2)*(x-mCoord(1)).*(y-mCoord(2))+... 
                   2*invCov(1,3)*(x-mCoord(1)).*(z-mCoord(3))+... 
                   invCov(2,2)*(y-mCoord(2)).^2+... 
                   2*invCov(2,3)*(y-mCoord(2)).*(z-mCoord(3))+... 
                   invCov(3,3)*(z-mCoord(3)).^2; 
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%%%%% Function handle for the gaussian pdf equation to be integrated 
guasEq  = @(x,y,z) 1/((2*pi)^(3/2)*sqrt(detCov))*exp(-expMult(x,y,z)/2); 

  
%%%%% Function handles for integration limits 
ymin    = @(x) -sqrt(R^2-x.^2);               % function for lower y limit 
ymax    = @(x)  sqrt(R^2-x.^2);                 % function for upper y limit 
zmin    = @(x,y) -sqrt(R^2-x.^2-y.^2);          % function for lower z limit 
zmax    = @(x,y) sqrt(R^2-x.^2-y.^2);           % function for upper z limit 

  
%%%%% Uses MATLAB function to integrate across the three variables 
SEint   = integral3(guasEq,-R,R,ymin,ymax,zmin,zmax); % preforms integration 
end                                                   % ends SEint function 

 

 


